// SPDX-License-Identifier: CC0-1.0 // // SPDX-FileContributor: Antonio Niño Díaz, 2022 #include #define GBA_SCREEN_W 240 #define GBA_SCREEN_H 160 #define REG_DISPCNT *((volatile uint16_t *)0x04000000) #define REG_KEYINPUT *((volatile uint16_t *)0x04000130) #define DEFAULT_REG_KEYINPUT *((volatile uint16_t *)0x04000130) #define KEY_DOWN_NOW(key) (~(REG_KEYINPUT) & key) #define KEY_A 1 #define KEY_B 2 #define KEY_SELECT 3 #define KEY_START 4 #define KEY_DPAD_RIGHT 5 #define KEY_DPAD_LEFT 6 #define KEY_DPAD_UP 7 #define KEY_DPAD_DOWN 8 #define KEY_TRIGGER_LEFT 9 #define KEY_TRIGGER_RIGHT 10 #define DISPCNT_BG_MODE_MASK (0x7) #define DISPCNT_BG_MODE(n) ((n) & DISPCNT_BG_MODE_MASK) // 0 to 5 #define DISPCNT_BG2_ENABLE (1 << 10) #define MEM_VRAM_MODE3_FB ((uint16_t *)0x06000000) #define FIXED_POINT int32_t #define fp 12 #define SHIFT_THRESHOLD 0.05 #define SHIFT_THRESHOLD_FP ((1 << fp) * SHIFT_THRESHOLD) #define FLOAT2FIXED(value) (int)((value) * (1 << fp)) #define FIXED2FLOAT(value) ((value) / (float)(1 << fp)) static inline uint16_t RGB15(uint16_t r, uint16_t g, uint16_t b) { return (r & 0x1F) | ((g & 0x1F) << 5) | ((b & 0x1F) << 10); } /////////////////////////////////////////////////////////// #include #include #include #include #include #include #define VWIDTH 50 #define VHEIGHT 50 #define CUBE_WIDTH 10 #define CUBE_WIDTH_FP ((1 << fp) * CUBE_WIDTH) enum faces { FACE_FRONT = 0, FACE_LEFT, FACE_RIGHT, FACE_BOTTOM, FACE_TOP, FACE_BACK, NUM_FACES, }; #define STEP 5 #define STEP_FP ((1 << fp) * STEP) #define ACTION_STEP 0.1 #define ACTION_STEP_FP ((1 << fp) * ACTION_STEP) #define PITCH_STEP 0.05 #define ROLL_STEP 0.05 #define YAW_STEP 0.05 volatile FIXED_POINT K1 = 60; volatile FIXED_POINT K2 = (2 * CUBE_WIDTH) + 20; #define MULT_FP(a,b) ((a * b) >> fp) #define SQ(n) (n * n) #define SQ_FP(n) (MULT_FP(n, n)) #define COORD2INDEX(x, y) (y * VWIDTH + x) #define COUPLE2INDEX(x) (COORD2INDEX(x[0], x[1])) #define GET_ROTATE_X_Q(a) ({ float _a = (FIXED2FLOAT(a)) ; \ struct Quaternions q = {}; q.w = FLOAT2FIXED(cos(_a * .5)); \ q.x = FLOAT2FIXED(sin(_a * .5)); q; }) #define GET_ROTATE_Y_Q(a) ({ float _a = (FIXED2FLOAT(a)) ; \ struct Quaternions q = {}; q.w = FLOAT2FIXED(cos(_a * .5)); \ q.y = FLOAT2FIXED(sin(_a * .5)); q; }) #define GET_ROTATE_Z_Q(a) ({ float _a = (FIXED2FLOAT(a)) ; \ struct Quaternions q = {}; q.w = FLOAT2FIXED(cos(_a * .5)); \ q.z = FLOAT2FIXED(sin(_a * .5)); q; }) //TODO Idle animations #define IS_IDLE (Idle.x || Idle.y || Idle.z) #define RESET_IDLE {Idle.x = 0; Idle.y = 0; Idle.z = 0;} struct { char x; char y; char z; } Idle; struct Quaternions { FIXED_POINT w; FIXED_POINT x; FIXED_POINT y; FIXED_POINT z; } Target, Current; FIXED_POINT interpolationStep = 0; FIXED_POINT zBuffer[VHEIGHT * VWIDTH]; char output[VHEIGHT * VWIDTH]; static volatile char shouldBreak = 1; static volatile char currentlyMoving = 0; static volatile char currentCountR = 0; static volatile char frontFacingFace = FACE_FRONT; void normalize(struct Quaternions *q) { float n = sqrt(FIXED2FLOAT(SQ_FP(q->w) + SQ_FP(q->x) + SQ_FP(q->y) + SQ_FP(q->z))); if (n == 0) return; q->w = FLOAT2FIXED(FIXED2FLOAT(q->w) / n); q->x = FLOAT2FIXED(FIXED2FLOAT(q->x) / n); q->y = FLOAT2FIXED(FIXED2FLOAT(q->y) / n); q->z = FLOAT2FIXED(FIXED2FLOAT(q->z) / n); } struct Quaternions mult(struct Quaternions q, FIXED_POINT x, FIXED_POINT y, FIXED_POINT z) { //p = q * p * qbar struct Quaternions res; res.w = 0; res.x = MULT_FP(x, (SQ_FP(q.w) + SQ_FP(q.x) - SQ_FP(q.y) - SQ_FP(q.z))) + (MULT_FP(y, (MULT_FP(q.x, q.y) - MULT_FP(q.w, q.z))) * 2) + (MULT_FP(z, (MULT_FP(q.x, q.z) + MULT_FP(q.w, q.y))) * 2); res.y = (MULT_FP(x, (MULT_FP(q.x, q.y) + MULT_FP(q.w,q.z))) * 2) + (MULT_FP(y, (SQ_FP(q.w) - SQ_FP(q.x) + SQ_FP(q.y) - SQ_FP(q.z)))) + (MULT_FP(z, (MULT_FP(q.y, q.z) - MULT_FP(q.w, q.x))) << 2); res.z = (MULT_FP(x, (MULT_FP(q.x, q.z) - MULT_FP(q.w, q.y)))* 2) + (MULT_FP(y, (MULT_FP(q.y, q.z) + MULT_FP(q.w, q.x))) * 2) + MULT_FP(z, (SQ_FP(q.w) - SQ_FP(q.x) - SQ_FP(q.y) + SQ_FP(q.z))); return res; } struct Quaternions multQ(struct Quaternions p, struct Quaternions q) { if (p.x <= SHIFT_THRESHOLD_FP && p.x >= -SHIFT_THRESHOLD_FP && p.y <= SHIFT_THRESHOLD_FP && p.y >= -SHIFT_THRESHOLD_FP && p.z <= SHIFT_THRESHOLD_FP && p.z >= -SHIFT_THRESHOLD_FP) return q; if (q.x <= SHIFT_THRESHOLD_FP && q.x >= -SHIFT_THRESHOLD_FP && q.y <= SHIFT_THRESHOLD_FP && q.y >= -SHIFT_THRESHOLD_FP && q.z <= SHIFT_THRESHOLD_FP && q.z >= -SHIFT_THRESHOLD_FP) return p; struct Quaternions res = { .w = MULT_FP(p.w, q.w) - MULT_FP(p.x, q.x) - MULT_FP(p.y, q.y) - MULT_FP(p.z, q.z), .x = MULT_FP(p.w, q.x) + MULT_FP(p.x, q.w) + MULT_FP(p.y, q.z) - MULT_FP(p.z, q.y), .y = MULT_FP(p.w, q.y) - MULT_FP(p.x, q.z) + MULT_FP(p.y, q.w) + MULT_FP(p.z, q.x), .z = MULT_FP(p.w, q.z) + MULT_FP(p.x, q.y) - MULT_FP(p.y, q.x) + MULT_FP(p.z, q.w), }; return res; } uint16_t chooseColor(char c) { switch (c) { case FACE_FRONT: return RGB15(31, 0, 0); case FACE_BACK: return RGB15(31, 15, 31); case FACE_BOTTOM: return RGB15(31, 0, 31); case FACE_LEFT: return RGB15(0, 0, 31); case FACE_RIGHT: return RGB15(0, 31, 31); case FACE_TOP: return RGB15(0, 31, 0); default: // BG return RGB15(31, 31, 31); } } char chooseMainFace() { int total = 0; int faces[NUM_FACES] = {0}; for (int k = 0; k < VWIDTH * VHEIGHT; ++k) if (output[k] >= 0 && output[k] < NUM_FACES) { faces[output[k]]++; ++total; } int max = 0, idx = 0; for (int k = 0; k < NUM_FACES; ++k) if (faces[k] > max) { max = faces[k]; idx = k; } frontFacingFace = max > total * 0.9 ? idx : -1; return frontFacingFace; } char isInQuad(char curr[2], char top[2], char left[2], char right[2], char bot[2]) { char *points[4] = {top, left, bot, right}; char pos = 0, neg = 0; char x = curr[0]; char y = curr[1];; int d; for (char i = 0; i < 4; ++i) { if (points[i][0] == curr[0] && points[i][1] == curr[1]) return 1; //Form a segment between the i'th point char x1 = points[i][0]; char y1 = points[i][1]; //And the i+1'th, or if i is the last, with the first point char i2 = (i + 1) % 4; char x2 = points[i2][0]; char y2 = points[i2][1]; //Compute the cross product d = (x - x1) * (y2 - y1) - (y - y1) * (x2 - x1); if (d > 0) ++pos; if (d < 0) ++neg; //If the sign changes, then point is outside if (pos > 0 && neg > 0) return 0; } return 1; } void fill_quads(char current_face, char top[2], char left[2], char right[2], char bot[2]) { if (current_face != 0) return; output[COUPLE2INDEX(top)] = RGB15(0, 0, 15); output[COUPLE2INDEX(left)] = RGB15(0, 0, 15); output[COUPLE2INDEX(right)] = RGB15(0, 0, 15); for (int y = top[1] ; y < bot[1] ; ++y) { for (int x = left[0] ; x < right[0] ; ++x) { char curr[2] = {x, y}; if (isInQuad(curr, top, left, right, bot)) //zbuffer issue {} //output[COORD2INDEX(x, y)] = current_face; } } } void detect_and_fill_quads() { for (int current_face = 0 ; current_face < NUM_FACES ; ++current_face) { char last_top [2] = {VWIDTH, VHEIGHT}; char last_left[2] = {VWIDTH, 0}; char last_right [2] = {0, 0}; char last_bot[2] = {0, 0}; char top [2] = {VWIDTH, VHEIGHT}; char left[2] = {VWIDTH, 0}; char right [2] = {0, 0}; char bot[2] = {0, 0}; for (char y = 0; y < VHEIGHT; ++y) { for (char x = 0; x < VWIDTH; ++x) { if (output[COORD2INDEX(x, y)] != current_face) continue; if (x <= left[0]) { left[0] = x; left[1] = y; } if (y <= top[1]) { top[0] = x; top[1] = y; } if (x >= right[0]) { right[0] = x; right[1] = y; } if (y >= bot[1]) { bot[0] = x; bot[1] = y; } } } fill_quads(current_face, top, left, right, bot); } } void printAscii() { // TODO scale up MEM_VRAM_MODE3_FB[120 + 80 * GBA_SCREEN_W] = RGB15(currentCountR, 31 - currentCountR, 0); MEM_VRAM_MODE3_FB[136 + 80 * GBA_SCREEN_W] = RGB15(currentCountR, 31 - currentCountR, 0); MEM_VRAM_MODE3_FB[120 + 96 * GBA_SCREEN_W] = RGB15(currentCountR, 31 - currentCountR, 0); currentCountR = currentCountR == 31 ? 0 : 31; detect_and_fill_quads(); for (int i = 0; i < VHEIGHT; ++i) { for (int j = 0; j < VWIDTH; ++j) { char prevc = 0; char *c = output + (i * VWIDTH + j); MEM_VRAM_MODE3_FB[(i + 50) * GBA_SCREEN_W + j + 50] = chooseColor(*c); } } } void rotateCube(FIXED_POINT cubeX, FIXED_POINT cubeY, FIXED_POINT cubeZ, char ch) { struct Quaternions q = mult(Current, cubeX, cubeY, cubeZ); int x = q.x >> fp; int y = q.y >> fp; // not fixed point yet!! float invZ = (1 << fp) / (float)(q.z + K2 * (1 << fp)); int screenX = (int)(VWIDTH * 0.5) + (int)((x) * K1) * invZ; int screenY = (int)(VHEIGHT * 0.5) + (int)((y) * K1) * invZ; //TODO luminescence if (screenX > VWIDTH || screenX < 0) return; int idx = screenY * VWIDTH + screenX; if (idx >= 0 && idx < VWIDTH * VHEIGHT) { invZ = FLOAT2FIXED(invZ); if (zBuffer[idx] < invZ) { zBuffer[idx] = invZ; output[idx] = ch; } } } struct Quaternions interpolate(struct Quaternions qa, struct Quaternions qb) { frontFacingFace = -1; struct Quaternions res; float cosHalfTheta = FIXED2FLOAT(MULT_FP(qa.w, qb.w) + MULT_FP(qa.x, qb.x) + MULT_FP(qa.y, qb.y) + MULT_FP(qa.z, qb.z)); //if qa = qb or qa = -qb then theta = 0 and we can return qa if (cosHalfTheta >= 1.0 || cosHalfTheta <= -1.0) { res.w = qa.w; res.x = qa.x; res.y = qa.y; res.z = qa.z; goto exit; } if (cosHalfTheta < 0) { qb.w = -qb.w; qb.x = -qb.x; qb.y = -qb.y; qb.z = qb.z; cosHalfTheta = -cosHalfTheta; } float halfTheta = acos(cosHalfTheta); float sinHalfTheta = sqrt(1.0 - cosHalfTheta * cosHalfTheta); //if theta = 180 degrees then result is not fully defined // we could rotate around any axis normal to qa or qb if (sinHalfTheta < 0.001 && sinHalfTheta > -0.001) { res.w = ((qa.w >> 1) + (qb.w >> 1)); res.x = ((qa.x >> 1) + (qb.x >> 1)); res.y = ((qa.y >> 1) + (qb.y >> 1)); res.z = ((qa.z >> 1) + (qb.z >> 1)); goto exit; } FIXED_POINT ratioA = FLOAT2FIXED(sin((1 - FIXED2FLOAT(interpolationStep)) * halfTheta) / sinHalfTheta); FIXED_POINT ratioB = FLOAT2FIXED(sin(FIXED2FLOAT(interpolationStep) * halfTheta) / sinHalfTheta); res.w = (MULT_FP(qa.w, ratioA) + MULT_FP(qb.w, ratioB)); res.x = (MULT_FP(qa.x, ratioA) + MULT_FP(qb.x, ratioB)); res.y = (MULT_FP(qa.y, ratioA) + MULT_FP(qb.y, ratioB)); res.z = (MULT_FP(qa.z, ratioA) + MULT_FP(qb.z, ratioB)); exit: interpolationStep += ACTION_STEP_FP; return res; } void handleAngle(char input) { // TODO if (currentlyMoving == 0) { currentlyMoving = input; switch (input) { case 'w': case 'W': Target = multQ(GET_ROTATE_X_Q(FLOAT2FIXED(M_PI_2)), Current); break; case 'a': case 'A': Target = multQ(GET_ROTATE_Y_Q(-FLOAT2FIXED(M_PI_2)), Current); break; case 's': case 'S': Target = multQ(GET_ROTATE_X_Q(-FLOAT2FIXED(M_PI_2)), Current); break; case 'd': case 'D': Target = multQ(GET_ROTATE_Y_Q(FLOAT2FIXED(M_PI_2)), Current); break; case 'q': case 'Q': Target = multQ(GET_ROTATE_Z_Q(-FLOAT2FIXED(M_PI_2)), Current); break; case 'e': case 'E': Target = multQ(GET_ROTATE_Z_Q(FLOAT2FIXED(M_PI_2)), Current); break; default: currentlyMoving = 0; //TODO idle movement } normalize(&Target); } else { if (interpolationStep < (1 << fp) - ACTION_STEP_FP * 2) { Current = interpolate(Current, Target); normalize(&Current); } else { Current = Target; interpolationStep = 0; currentlyMoving = 0; } } } char getInput() { // TODO char c = 'd'; handleAngle(c); return c; } int main() { REG_DISPCNT = DISPCNT_BG_MODE(3) | DISPCNT_BG2_ENABLE; Current = GET_ROTATE_Z_Q(0); while (1) { memset(output, NUM_FACES, VWIDTH * VHEIGHT); memset(zBuffer, 0xffffffff, VWIDTH * VHEIGHT * sizeof(FIXED_POINT)); for (FIXED_POINT cubeX = -CUBE_WIDTH_FP + STEP_FP ; cubeX <= CUBE_WIDTH_FP - STEP_FP; cubeX += STEP_FP) { for (FIXED_POINT cubeY = -CUBE_WIDTH_FP + STEP_FP; cubeY <= CUBE_WIDTH_FP - STEP_FP; cubeY += STEP_FP) { switch (FACE_FRONT) { case FACE_FRONT: rotateCube(cubeX, cubeY, -CUBE_WIDTH_FP, FACE_FRONT); break; case FACE_LEFT: rotateCube(-CUBE_WIDTH_FP, cubeX, cubeY, FACE_LEFT); break; case FACE_RIGHT: rotateCube(CUBE_WIDTH_FP, cubeX, cubeY, FACE_RIGHT); break; case FACE_BOTTOM: rotateCube(cubeX, -CUBE_WIDTH_FP, cubeY, FACE_BOTTOM); break; case FACE_TOP: rotateCube(cubeX, CUBE_WIDTH_FP, cubeY, FACE_TOP); break; case FACE_BACK: rotateCube(cubeX, cubeY, CUBE_WIDTH_FP, FACE_BACK); break; default: // idk render all rotateCube(cubeX, cubeY, -CUBE_WIDTH_FP, FACE_FRONT); rotateCube(-CUBE_WIDTH_FP, cubeX, cubeY, FACE_LEFT); rotateCube(CUBE_WIDTH_FP, cubeX, cubeY, FACE_RIGHT); rotateCube(cubeX, -CUBE_WIDTH_FP, cubeY, FACE_TOP); rotateCube(cubeX, CUBE_WIDTH_FP, cubeY, FACE_BOTTOM); rotateCube(cubeX, cubeY, CUBE_WIDTH_FP, FACE_BACK); } } } printAscii(); getInput(); } }