Compare commits
No commits in common. "a1cd49180b300980840c95ed88000d468b792380" and "044d31fa473bea0598a9776a13aa705cf95da27c" have entirely different histories.
a1cd49180b
...
044d31fa47
2 changed files with 396 additions and 416 deletions
|
@ -4,7 +4,7 @@
|
|||
|
||||
NAME := gbafix
|
||||
|
||||
# CC := gcc
|
||||
CC := gcc
|
||||
RM := rm -rf
|
||||
|
||||
# `make V=` builds the binary in verbose build mode
|
||||
|
|
526
source/main.c
526
source/main.c
|
@ -3,7 +3,6 @@
|
|||
// SPDX-FileContributor: Antonio Niño Díaz, 2022
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#define GBA_SCREEN_W 240
|
||||
#define GBA_SCREEN_H 160
|
||||
|
@ -30,24 +29,15 @@
|
|||
|
||||
#define DISPCNT_BG2_ENABLE (1 << 10)
|
||||
|
||||
#define MEM_VRAM_MODE4 ((uint8_t *)buffer)
|
||||
|
||||
#define SHOW_BACK 0x10;
|
||||
#define FRONT_BUFFER (0x6000000)
|
||||
#define BACK_BUFFER (0x600A000)
|
||||
|
||||
#define PALETTE ((uint16_t *)0x5000000)
|
||||
static volatile uint8_t lastPaletteIndex = 0;
|
||||
#define MEM_VRAM_MODE3_FB ((uint16_t *)0x06000000)
|
||||
|
||||
#define FIXED_POINT int32_t
|
||||
#define FP 12
|
||||
#define fp 12
|
||||
#define SHIFT_THRESHOLD 0.05
|
||||
#define SHIFT_THRESHOLD_FP ((1 << FP) * SHIFT_THRESHOLD)
|
||||
#define SHIFT_THRESHOLD_FP ((1 << fp) * SHIFT_THRESHOLD)
|
||||
|
||||
#define FLOAT2FIXED(value) (int)((value) * (1 << FP))
|
||||
#define FIXED2FLOAT(value) ((value) / (float)(1 << FP))
|
||||
|
||||
static uint8_t *buffer = (uint8_t *)FRONT_BUFFER;
|
||||
#define FLOAT2FIXED(value) (int)((value) * (1 << fp))
|
||||
#define FIXED2FLOAT(value) ((value) / (float)(1 << fp))
|
||||
|
||||
static inline uint16_t
|
||||
RGB15(uint16_t r, uint16_t g, uint16_t b)
|
||||
|
@ -55,28 +45,19 @@ RGB15(uint16_t r, uint16_t g, uint16_t b)
|
|||
return (r & 0x1F) | ((g & 0x1F) << 5) | ((b & 0x1F) << 10);
|
||||
}
|
||||
|
||||
void
|
||||
flipBuffers()
|
||||
{
|
||||
if(buffer == (uint8_t *)FRONT_BUFFER) {
|
||||
REG_DISPCNT &= ~SHOW_BACK;
|
||||
buffer = (uint8_t *)BACK_BUFFER;
|
||||
} else {
|
||||
REG_DISPCNT |= SHOW_BACK;
|
||||
buffer = (uint8_t *)FRONT_BUFFER;
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <unistd.h>
|
||||
#include <string.h>
|
||||
#include <fcntl.h>
|
||||
#include <float.h>
|
||||
|
||||
#define VWIDTH 50
|
||||
#define VHEIGHT 50
|
||||
#define CUBE_WIDTH 10
|
||||
#define CUBE_WIDTH_FP ((1 << FP) * CUBE_WIDTH)
|
||||
#define CUBE_WIDTH_FP ((1 << fp) * CUBE_WIDTH)
|
||||
|
||||
enum faces {
|
||||
FACE_FRONT = 0,
|
||||
|
@ -88,29 +69,35 @@ enum faces {
|
|||
NUM_FACES,
|
||||
};
|
||||
|
||||
#define STEP 20
|
||||
#define STEP_FP ((1 << FP) * STEP)
|
||||
#define STEP 5
|
||||
#define STEP_FP ((1 << fp) * STEP)
|
||||
|
||||
#define ACTION_STEP 0.1
|
||||
#define ACTION_STEP_FP ((1 << FP) * ACTION_STEP)
|
||||
#define ACTION_STEP_FP ((1 << fp) * ACTION_STEP)
|
||||
|
||||
#define SCALE 5 // how much is our initial render scaled
|
||||
#define PITCH_STEP 0.05
|
||||
#define ROLL_STEP 0.05
|
||||
#define YAW_STEP 0.05
|
||||
|
||||
#define K1 (20)
|
||||
#define K2 (2 * CUBE_WIDTH + 10)
|
||||
volatile FIXED_POINT K1 = 60;
|
||||
volatile FIXED_POINT K2 = (2 * CUBE_WIDTH) + 20;
|
||||
|
||||
#define MULT_FP(a, b) ((a * b) >> FP)
|
||||
|
||||
#define MULT_FP(a,b) ((a * b) >> fp)
|
||||
|
||||
#define SQ(n) (n * n)
|
||||
#define SQ_FP(n) (MULT_FP(n, n))
|
||||
|
||||
#define GET_ROTATE_X_Q(a) ({ float _a = (a) ; \
|
||||
#define COORD2INDEX(x, y) (y * VWIDTH + x)
|
||||
#define COUPLE2INDEX(x) (COORD2INDEX(x[0], x[1]))
|
||||
|
||||
#define GET_ROTATE_X_Q(a) ({ float _a = (FIXED2FLOAT(a)) ; \
|
||||
struct Quaternions q = {}; q.w = FLOAT2FIXED(cos(_a * .5)); \
|
||||
q.x = FLOAT2FIXED(sin(_a * .5)); q; })
|
||||
#define GET_ROTATE_Y_Q(a) ({ float _a = (a) ; \
|
||||
#define GET_ROTATE_Y_Q(a) ({ float _a = (FIXED2FLOAT(a)) ; \
|
||||
struct Quaternions q = {}; q.w = FLOAT2FIXED(cos(_a * .5)); \
|
||||
q.y = FLOAT2FIXED(sin(_a * .5)); q; })
|
||||
#define GET_ROTATE_Z_Q(a) ({ float _a = (a) ; \
|
||||
#define GET_ROTATE_Z_Q(a) ({ float _a = (FIXED2FLOAT(a)) ; \
|
||||
struct Quaternions q = {}; q.w = FLOAT2FIXED(cos(_a * .5)); \
|
||||
q.z = FLOAT2FIXED(sin(_a * .5)); q; })
|
||||
|
||||
|
@ -118,46 +105,10 @@ enum faces {
|
|||
#define IS_IDLE (Idle.x || Idle.y || Idle.z)
|
||||
#define RESET_IDLE {Idle.x = 0; Idle.y = 0; Idle.z = 0;}
|
||||
|
||||
void
|
||||
init_colors()
|
||||
{
|
||||
const uint16_t color_order[NUM_FACES + 1] = {
|
||||
RGB15(0, 0, 0),
|
||||
RGB15(31, 0, 0),
|
||||
RGB15(0, 31, 0),
|
||||
RGB15(0, 0, 31),
|
||||
RGB15(0, 31, 31),
|
||||
RGB15(31, 31, 0),
|
||||
RGB15(31, 0, 31),
|
||||
};
|
||||
|
||||
for ( ; lastPaletteIndex <= NUM_FACES ; ++lastPaletteIndex)
|
||||
PALETTE[lastPaletteIndex] = color_order[lastPaletteIndex];
|
||||
}
|
||||
|
||||
uint8_t
|
||||
chooseColor(uint8_t c)
|
||||
{
|
||||
if (c >= 0 && c < NUM_FACES)
|
||||
return c + 1; // palette 0 is bg
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
void
|
||||
putPx(uint16_t x, uint16_t y, uint8_t c)
|
||||
{
|
||||
for (uint8_t i = 0 ; i < SCALE ; ++i)
|
||||
for (uint8_t j = 0 ; j < SCALE ; ++j) {
|
||||
uint16_t pos = GBA_SCREEN_W * (y * SCALE + j) + x * SCALE + i;
|
||||
buffer[pos] = chooseColor(c);
|
||||
}
|
||||
}
|
||||
|
||||
struct {
|
||||
uint8_t x;
|
||||
uint8_t y;
|
||||
uint8_t z;
|
||||
char x;
|
||||
char y;
|
||||
char z;
|
||||
} Idle;
|
||||
|
||||
|
||||
|
@ -168,23 +119,22 @@ struct Quaternions {
|
|||
FIXED_POINT z;
|
||||
} Target, Current;
|
||||
|
||||
static FIXED_POINT interpolationStep = 0;
|
||||
static volatile uint16_t vertices[NUM_FACES * 2 * 4];
|
||||
static volatile FIXED_POINT zBuffer[NUM_FACES * 2];
|
||||
FIXED_POINT interpolationStep = 0;
|
||||
FIXED_POINT zBuffer[VHEIGHT * VWIDTH];
|
||||
char output[VHEIGHT * VWIDTH];
|
||||
|
||||
static volatile uint8_t shouldBreak = 1;
|
||||
static volatile uint8_t currentlyMoving = 0;
|
||||
static volatile uint8_t currentCountR = 0;
|
||||
static volatile uint8_t frontFacingFace = FACE_FRONT;
|
||||
static volatile char shouldBreak = 1;
|
||||
static volatile char currentlyMoving = 0;
|
||||
static volatile char currentCountR = 0;
|
||||
static volatile char frontFacingFace = FACE_FRONT;
|
||||
|
||||
void
|
||||
normalize(struct Quaternions *q)
|
||||
{
|
||||
float n = sqrt(FIXED2FLOAT(SQ_FP(q->w) + SQ_FP(q->x) +
|
||||
SQ_FP(q->y) + SQ_FP(q->z)));
|
||||
if (n == 0.|| n == 1.)
|
||||
if (n == 0)
|
||||
return;
|
||||
|
||||
q->w = FLOAT2FIXED(FIXED2FLOAT(q->w) / n);
|
||||
q->x = FLOAT2FIXED(FIXED2FLOAT(q->x) / n);
|
||||
q->y = FLOAT2FIXED(FIXED2FLOAT(q->y) / n);
|
||||
|
@ -192,87 +142,124 @@ normalize(struct Quaternions *q)
|
|||
}
|
||||
|
||||
struct Quaternions
|
||||
mult(struct Quaternions *q, FIXED_POINT x, FIXED_POINT y, FIXED_POINT z)
|
||||
mult(struct Quaternions q, FIXED_POINT x, FIXED_POINT y, FIXED_POINT z)
|
||||
{
|
||||
//p = q * p * qbar
|
||||
struct Quaternions res;
|
||||
|
||||
// << 1 <=> * 2
|
||||
res.w = 0;
|
||||
res.x = MULT_FP(x, (SQ_FP(q->w) + SQ_FP(q->x) - SQ_FP(q->y) - SQ_FP(q->z)))
|
||||
+ (MULT_FP(y, (MULT_FP(q->x, q->y) - MULT_FP(q->w, q->z))) << 1)
|
||||
+ (MULT_FP(z, (MULT_FP(q->x, q->z) + MULT_FP(q->w, q->y))) << 1);
|
||||
res.x = MULT_FP(x, (SQ_FP(q.w) + SQ_FP(q.x) - SQ_FP(q.y) - SQ_FP(q.z)))
|
||||
+ (MULT_FP(y, (MULT_FP(q.x, q.y) - MULT_FP(q.w, q.z))) * 2)
|
||||
+ (MULT_FP(z, (MULT_FP(q.x, q.z) + MULT_FP(q.w, q.y))) * 2);
|
||||
|
||||
res.y = (MULT_FP(x, (MULT_FP(q->x, q->y) + MULT_FP(q->w,q->z))) << 1)
|
||||
+ (MULT_FP(y, (SQ_FP(q->w) - SQ_FP(q->x) + SQ_FP(q->y) - SQ_FP(q->z))))
|
||||
+ (MULT_FP(z, (MULT_FP(q->y, q->z) - MULT_FP(q->w, q->x))) << 1);
|
||||
res.y = (MULT_FP(x, (MULT_FP(q.x, q.y) + MULT_FP(q.w,q.z))) * 2)
|
||||
+ (MULT_FP(y, (SQ_FP(q.w) - SQ_FP(q.x) + SQ_FP(q.y) - SQ_FP(q.z))))
|
||||
+ (MULT_FP(z, (MULT_FP(q.y, q.z) - MULT_FP(q.w, q.x))) << 2);
|
||||
|
||||
res.z = (MULT_FP(x, (MULT_FP(q->x, q->z) - MULT_FP(q->w, q->y))) << 1)
|
||||
+ (MULT_FP(y, (MULT_FP(q->y, q->z) + MULT_FP(q->w, q->x))) << 1)
|
||||
+ MULT_FP(z, (SQ_FP(q->w) - SQ_FP(q->x) - SQ_FP(q->y) + SQ_FP(q->z)));
|
||||
res.z = (MULT_FP(x, (MULT_FP(q.x, q.z) - MULT_FP(q.w, q.y)))* 2)
|
||||
+ (MULT_FP(y, (MULT_FP(q.y, q.z) + MULT_FP(q.w, q.x))) * 2)
|
||||
+ MULT_FP(z, (SQ_FP(q.w) - SQ_FP(q.x) - SQ_FP(q.y) + SQ_FP(q.z)));
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// res in quat p
|
||||
void
|
||||
multQ(struct Quaternions *p, struct Quaternions *q)
|
||||
struct Quaternions
|
||||
multQ(struct Quaternions p, struct Quaternions q)
|
||||
{
|
||||
if (p->x <= SHIFT_THRESHOLD_FP && p->x >= -SHIFT_THRESHOLD_FP
|
||||
&& p->y <= SHIFT_THRESHOLD_FP && p->y >= -SHIFT_THRESHOLD_FP
|
||||
&& p->z <= SHIFT_THRESHOLD_FP && p->z >= -SHIFT_THRESHOLD_FP) {
|
||||
p = q;
|
||||
return;
|
||||
}
|
||||
if (p.x <= SHIFT_THRESHOLD_FP && p.x >= -SHIFT_THRESHOLD_FP
|
||||
&& p.y <= SHIFT_THRESHOLD_FP && p.y >= -SHIFT_THRESHOLD_FP
|
||||
&& p.z <= SHIFT_THRESHOLD_FP && p.z >= -SHIFT_THRESHOLD_FP)
|
||||
return q;
|
||||
|
||||
if (q->x <= SHIFT_THRESHOLD_FP && q->x >= -SHIFT_THRESHOLD_FP
|
||||
&& q->y <= SHIFT_THRESHOLD_FP && q->y >= -SHIFT_THRESHOLD_FP
|
||||
&& q->z <= SHIFT_THRESHOLD_FP && q->z >= -SHIFT_THRESHOLD_FP)
|
||||
return;
|
||||
if (q.x <= SHIFT_THRESHOLD_FP && q.x >= -SHIFT_THRESHOLD_FP
|
||||
&& q.y <= SHIFT_THRESHOLD_FP && q.y >= -SHIFT_THRESHOLD_FP
|
||||
&& q.z <= SHIFT_THRESHOLD_FP && q.z >= -SHIFT_THRESHOLD_FP)
|
||||
return p;
|
||||
|
||||
FIXED_POINT w = MULT_FP(p->w, q->w) - MULT_FP(p->x, q->x) -
|
||||
MULT_FP(p->y, q->y) - MULT_FP(p->z, q->z);
|
||||
FIXED_POINT x = MULT_FP(p->w, q->x) + MULT_FP(p->x, q->w) +
|
||||
MULT_FP(p->y, q->z) - MULT_FP(p->z, q->y);
|
||||
FIXED_POINT y = MULT_FP(p->w, q->y) - MULT_FP(p->x, q->z) +
|
||||
MULT_FP(p->y, q->w) + MULT_FP(p->z, q->x);
|
||||
FIXED_POINT z = MULT_FP(p->w, q->z) + MULT_FP(p->x, q->y) -
|
||||
MULT_FP(p->y, q->x) + MULT_FP(p->z, q->w);
|
||||
p->w = w;
|
||||
p->x = x;
|
||||
p->y = y;
|
||||
p->z = z;
|
||||
struct Quaternions res = {
|
||||
.w = MULT_FP(p.w, q.w) - MULT_FP(p.x, q.x) -
|
||||
MULT_FP(p.y, q.y) - MULT_FP(p.z, q.z),
|
||||
.x = MULT_FP(p.w, q.x) + MULT_FP(p.x, q.w) +
|
||||
MULT_FP(p.y, q.z) - MULT_FP(p.z, q.y),
|
||||
.y = MULT_FP(p.w, q.y) - MULT_FP(p.x, q.z) +
|
||||
MULT_FP(p.y, q.w) + MULT_FP(p.z, q.x),
|
||||
.z = MULT_FP(p.w, q.z) + MULT_FP(p.x, q.y) -
|
||||
MULT_FP(p.y, q.x) + MULT_FP(p.z, q.w),
|
||||
};
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
uint16_t
|
||||
chooseColor(char c)
|
||||
{
|
||||
switch (c) {
|
||||
case FACE_FRONT:
|
||||
return RGB15(31, 0, 0);
|
||||
case FACE_BACK:
|
||||
return RGB15(31, 15, 31);
|
||||
case FACE_BOTTOM:
|
||||
return RGB15(31, 0, 31);
|
||||
case FACE_LEFT:
|
||||
return RGB15(0, 0, 31);
|
||||
case FACE_RIGHT:
|
||||
return RGB15(0, 31, 31);
|
||||
case FACE_TOP:
|
||||
return RGB15(0, 31, 0);
|
||||
default:
|
||||
// BG
|
||||
return RGB15(31, 31, 31);
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t
|
||||
char
|
||||
chooseMainFace()
|
||||
{
|
||||
// TODO
|
||||
return 0;
|
||||
int total = 0;
|
||||
int faces[NUM_FACES] = {0};
|
||||
|
||||
for (int k = 0; k < VWIDTH * VHEIGHT; ++k)
|
||||
if (output[k] >= 0 && output[k] < NUM_FACES) {
|
||||
faces[output[k]]++;
|
||||
++total;
|
||||
}
|
||||
|
||||
int max = 0, idx = 0;
|
||||
for (int k = 0; k < NUM_FACES; ++k)
|
||||
if (faces[k] > max) {
|
||||
max = faces[k];
|
||||
idx = k;
|
||||
}
|
||||
|
||||
frontFacingFace = max > total * 0.9 ? idx : -1;
|
||||
return frontFacingFace;
|
||||
}
|
||||
|
||||
uint8_t
|
||||
isInQuad(const uint16_t x, const uint16_t y, uint8_t current_face)
|
||||
char
|
||||
isInQuad(char curr[2], char top[2], char left[2],
|
||||
char right[2], char bot[2])
|
||||
{
|
||||
uint16_t *points = (uint16_t *)&vertices[current_face * 8];
|
||||
char *points[4] = {top, left, bot, right};
|
||||
|
||||
uint8_t pos = 0, neg = 0;
|
||||
int32_t d;
|
||||
char pos = 0, neg = 0;
|
||||
char x = curr[0];
|
||||
char y = curr[1];;
|
||||
int d;
|
||||
|
||||
for (uint8_t i = 0; i < 4; ++i) {
|
||||
if (points[2 * i] == x && points[2 * i + 1] == y)
|
||||
for (char i = 0; i < 4; ++i) {
|
||||
if (points[i][0] == curr[0] && points[i][1] == curr[1])
|
||||
return 1;
|
||||
|
||||
//Form a segment between the i'th point
|
||||
uint16_t x1 = points[2 * i];
|
||||
uint16_t y1 = points[2 * i + 1];
|
||||
char x1 = points[i][0];
|
||||
char y1 = points[i][1];
|
||||
|
||||
//And the i+1'th, or if i is the last, with the first point
|
||||
uint8_t i2 = (i + 1) % 4;
|
||||
char i2 = (i + 1) % 4;
|
||||
|
||||
char x2 = points[i2][0];
|
||||
char y2 = points[i2][1];
|
||||
|
||||
uint16_t x2 = points[2 * i2];
|
||||
uint16_t y2 = points[2 * i2 + 1];
|
||||
|
||||
//Compute the cross product
|
||||
d = (x - x1) * (y2 - y1) - (y - y1) * (x2 - x1);
|
||||
|
@ -288,138 +275,135 @@ isInQuad(const uint16_t x, const uint16_t y, uint8_t current_face)
|
|||
return 1;
|
||||
}
|
||||
|
||||
// the 4 vertices rendered do not make a convex quad
|
||||
// we have to switch 2 vertices for that
|
||||
// only works because we render 4 points left to right
|
||||
void
|
||||
makeConvex(uint16_t *points)
|
||||
fill_quads(char current_face, char top[2], char left[2],
|
||||
char right[2], char bot[2])
|
||||
{
|
||||
// little hack
|
||||
|
||||
uint16_t tmpX = points[6], tmpY = points[7];
|
||||
points[6] = points[4];
|
||||
points[7] = points[5];
|
||||
points[4] = tmpX;
|
||||
points[5] = tmpY;
|
||||
if (current_face != 0) return;
|
||||
output[COUPLE2INDEX(top)] = RGB15(0, 0, 15);
|
||||
output[COUPLE2INDEX(left)] = RGB15(0, 0, 15);
|
||||
output[COUPLE2INDEX(right)] = RGB15(0, 0, 15);
|
||||
|
||||
for (int y = top[1] ; y < bot[1] ; ++y) {
|
||||
for (int x = left[0] ; x < right[0] ; ++x) {
|
||||
char curr[2] = {x, y};
|
||||
if (isInQuad(curr, top, left, right, bot))
|
||||
//zbuffer issue
|
||||
{}
|
||||
//output[COORD2INDEX(x, y)] = current_face;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
fillQuads(uint8_t current_face)
|
||||
detect_and_fill_quads()
|
||||
{
|
||||
makeConvex((uint16_t *)&vertices[current_face * 8]);
|
||||
|
||||
uint16_t top = UINT16_MAX, bot = 0, left = UINT16_MAX, right = 0;
|
||||
for (uint8_t k = 0 ; k < 8 ; ++k) {
|
||||
const uint16_t item = vertices[current_face * 8 + k];
|
||||
|
||||
if (k & 1) {
|
||||
if (item > bot)
|
||||
bot = item;
|
||||
if (item < top)
|
||||
top = item;
|
||||
} else {
|
||||
if (item > right)
|
||||
right = item;
|
||||
if (item < left)
|
||||
left = item;
|
||||
for (int current_face = 0 ; current_face < NUM_FACES ; ++current_face) {
|
||||
char last_top [2] = {VWIDTH, VHEIGHT};
|
||||
char last_left[2] = {VWIDTH, 0};
|
||||
char last_right [2] = {0, 0};
|
||||
char last_bot[2] = {0, 0};
|
||||
char top [2] = {VWIDTH, VHEIGHT};
|
||||
char left[2] = {VWIDTH, 0};
|
||||
char right [2] = {0, 0};
|
||||
char bot[2] = {0, 0};
|
||||
for (char y = 0; y < VHEIGHT; ++y) {
|
||||
for (char x = 0; x < VWIDTH; ++x) {
|
||||
if (output[COORD2INDEX(x, y)] != current_face)
|
||||
continue;
|
||||
if (x <= left[0]) {
|
||||
left[0] = x;
|
||||
left[1] = y;
|
||||
}
|
||||
if (y <= top[1]) {
|
||||
top[0] = x;
|
||||
top[1] = y;
|
||||
}
|
||||
if (x >= right[0]) {
|
||||
right[0] = x;
|
||||
right[1] = y;
|
||||
}
|
||||
if (y >= bot[1]) {
|
||||
bot[0] = x;
|
||||
bot[1] = y;
|
||||
}
|
||||
}
|
||||
|
||||
for (uint16_t y = top ; y <= bot; ++y) {
|
||||
for (uint16_t x = left ; x <= right ; ++x) {
|
||||
if (isInQuad(x, y, current_face))
|
||||
putPx(x, y, current_face);
|
||||
}
|
||||
fill_quads(current_face, top, left, right, bot);
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t
|
||||
detect(uint8_t current_face)
|
||||
{
|
||||
for (uint8_t k = current_face * 8; k < current_face * 8 + 8; ++k)
|
||||
if (vertices[k] == UINT16_MAX)
|
||||
return 0;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
int
|
||||
comp(const void *p1, const void *p2) {
|
||||
FIXED_POINT left = *(const FIXED_POINT *)p1;
|
||||
FIXED_POINT right = *(const FIXED_POINT *)p2;
|
||||
|
||||
return ((left > right) - (left < right));
|
||||
}
|
||||
|
||||
void
|
||||
detectAndFillQuads()
|
||||
{
|
||||
qsort((FIXED_POINT *)zBuffer, NUM_FACES, 2 * sizeof(FIXED_POINT), comp);
|
||||
for (uint8_t idx = 0 ; idx < NUM_FACES ; ++idx) {
|
||||
char ch = zBuffer[2 * idx + 1];
|
||||
if (detect(ch))
|
||||
fillQuads(ch);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
printAscii()
|
||||
{
|
||||
detectAndFillQuads();
|
||||
flipBuffers();
|
||||
}
|
||||
// TODO scale up
|
||||
MEM_VRAM_MODE3_FB[120 + 80 * GBA_SCREEN_W] = RGB15(currentCountR, 31 - currentCountR, 0);
|
||||
MEM_VRAM_MODE3_FB[136 + 80 * GBA_SCREEN_W] = RGB15(currentCountR, 31 - currentCountR, 0);
|
||||
MEM_VRAM_MODE3_FB[120 + 96 * GBA_SCREEN_W] = RGB15(currentCountR, 31 - currentCountR, 0);
|
||||
currentCountR = currentCountR == 31 ? 0 : 31;
|
||||
|
||||
void
|
||||
rotateCube(FIXED_POINT cubeX, FIXED_POINT cubeY, FIXED_POINT cubeZ, uint8_t ch)
|
||||
{
|
||||
struct Quaternions q = mult(&Current, cubeX, cubeY, cubeZ);
|
||||
detect_and_fill_quads();
|
||||
|
||||
uint32_t x = q.x >> FP;
|
||||
uint32_t y = q.y >> FP;
|
||||
|
||||
// not fixed point yet!!
|
||||
float invZ = (1 << FP) / (float)(q.z + K2 * (1 << FP));
|
||||
|
||||
int32_t screenX = CUBE_WIDTH * 2 + (int32_t)((x) * K1) * invZ;
|
||||
int32_t screenY = CUBE_WIDTH * 2 + (int32_t)((y) * K1) * invZ;
|
||||
//TODO luminescence
|
||||
|
||||
if (screenX > GBA_SCREEN_W || screenX < 0
|
||||
|| screenY > GBA_SCREEN_H || screenY < 0) return;
|
||||
|
||||
FIXED_POINT invZFixed = FLOAT2FIXED(invZ);
|
||||
uint8_t firstEmptyVertex = ch * 8;
|
||||
for ( ; vertices[firstEmptyVertex] != UINT16_MAX
|
||||
&& firstEmptyVertex - ch * 8 < 8 ; firstEmptyVertex+=2);
|
||||
|
||||
vertices[firstEmptyVertex] = screenX;
|
||||
vertices[firstEmptyVertex + 1] = screenY;
|
||||
|
||||
if (zBuffer[2 * ch] < invZFixed) {
|
||||
zBuffer[2 * ch] = invZFixed;
|
||||
zBuffer[2 * ch + 1] = ch;
|
||||
for (int i = 0; i < VHEIGHT; ++i) {
|
||||
for (int j = 0; j < VWIDTH; ++j) {
|
||||
char prevc = 0;
|
||||
char *c = output + (i * VWIDTH + j);
|
||||
MEM_VRAM_MODE3_FB[(i + 50) * GBA_SCREEN_W + j + 50] = chooseColor(*c);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
interpolate(struct Quaternions *qa, struct Quaternions *qb)
|
||||
rotateCube(FIXED_POINT cubeX, FIXED_POINT cubeY, FIXED_POINT cubeZ, char ch)
|
||||
{
|
||||
struct Quaternions q = mult(Current, cubeX, cubeY, cubeZ);
|
||||
|
||||
int x = q.x >> fp;
|
||||
int y = q.y >> fp;
|
||||
|
||||
// not fixed point yet!!
|
||||
float invZ = (1 << fp) / (float)(q.z + K2 * (1 << fp));
|
||||
|
||||
int screenX = (int)(VWIDTH * 0.5) + (int)((x) * K1) * invZ;
|
||||
int screenY = (int)(VHEIGHT * 0.5) + (int)((y) * K1) * invZ;
|
||||
//TODO luminescence
|
||||
|
||||
if (screenX > VWIDTH || screenX < 0) return;
|
||||
|
||||
int idx = screenY * VWIDTH + screenX;
|
||||
if (idx >= 0 && idx < VWIDTH * VHEIGHT) {
|
||||
invZ = FLOAT2FIXED(invZ);
|
||||
if (zBuffer[idx] < invZ) {
|
||||
zBuffer[idx] = invZ;
|
||||
output[idx] = ch;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct Quaternions
|
||||
interpolate(struct Quaternions qa, struct Quaternions qb)
|
||||
{
|
||||
frontFacingFace = -1;
|
||||
struct Quaternions res;
|
||||
float cosHalfTheta =
|
||||
FIXED2FLOAT(MULT_FP(qa->w, qb->w) +
|
||||
MULT_FP(qa->x, qb->x) +
|
||||
MULT_FP(qa->y, qb->y) +
|
||||
MULT_FP(qa->z, qb->z));
|
||||
FIXED2FLOAT(MULT_FP(qa.w, qb.w) +
|
||||
MULT_FP(qa.x, qb.x) +
|
||||
MULT_FP(qa.y, qb.y) +
|
||||
MULT_FP(qa.z, qb.z));
|
||||
//if qa = qb or qa = -qb then theta = 0 and we can return qa
|
||||
if (cosHalfTheta >= 1.0 || cosHalfTheta <= -1.0) {
|
||||
res.w = qa.w;
|
||||
res.x = qa.x;
|
||||
res.y = qa.y;
|
||||
res.z = qa.z;
|
||||
goto exit;
|
||||
}
|
||||
if (cosHalfTheta < 0) {
|
||||
qb->w = -qb->w;
|
||||
qb->x = -qb->x;
|
||||
qb->y = -qb->y;
|
||||
qb->z = qb->z;
|
||||
qb.w = -qb.w;
|
||||
qb.x = -qb.x;
|
||||
qb.y = -qb.y;
|
||||
qb.z = qb.z;
|
||||
cosHalfTheta = -cosHalfTheta;
|
||||
}
|
||||
|
||||
|
@ -427,11 +411,11 @@ interpolate(struct Quaternions *qa, struct Quaternions *qb)
|
|||
float sinHalfTheta = sqrt(1.0 - cosHalfTheta * cosHalfTheta);
|
||||
//if theta = 180 degrees then result is not fully defined
|
||||
// we could rotate around any axis normal to qa or qb
|
||||
if (sinHalfTheta < 0.01 && sinHalfTheta > -0.01) {
|
||||
qa->w = ((qa->w >> 1) + (qb->w >> 1));
|
||||
qa->x = ((qa->x >> 1) + (qb->x >> 1));
|
||||
qa->y = ((qa->y >> 1) + (qb->y >> 1));
|
||||
qa->z = ((qa->z >> 1) + (qb->z >> 1));
|
||||
if (sinHalfTheta < 0.001 && sinHalfTheta > -0.001) {
|
||||
res.w = ((qa.w >> 1) + (qb.w >> 1));
|
||||
res.x = ((qa.x >> 1) + (qb.x >> 1));
|
||||
res.y = ((qa.y >> 1) + (qb.y >> 1));
|
||||
res.z = ((qa.z >> 1) + (qb.z >> 1));
|
||||
goto exit;
|
||||
}
|
||||
|
||||
|
@ -439,58 +423,55 @@ interpolate(struct Quaternions *qa, struct Quaternions *qb)
|
|||
FIXED_POINT ratioA = FLOAT2FIXED(sin((1 - FIXED2FLOAT(interpolationStep)) * halfTheta) / sinHalfTheta);
|
||||
FIXED_POINT ratioB = FLOAT2FIXED(sin(FIXED2FLOAT(interpolationStep) * halfTheta) / sinHalfTheta);
|
||||
|
||||
qa->w = (MULT_FP(qa->w, ratioA) + MULT_FP(qb->w, ratioB));
|
||||
qa->x = (MULT_FP(qa->x, ratioA) + MULT_FP(qb->x, ratioB));
|
||||
qa->y = (MULT_FP(qa->y, ratioA) + MULT_FP(qb->y, ratioB));
|
||||
qa->z = (MULT_FP(qa->z, ratioA) + MULT_FP(qb->z, ratioB));
|
||||
res.w = (MULT_FP(qa.w, ratioA) + MULT_FP(qb.w, ratioB));
|
||||
res.x = (MULT_FP(qa.x, ratioA) + MULT_FP(qb.x, ratioB));
|
||||
res.y = (MULT_FP(qa.y, ratioA) + MULT_FP(qb.y, ratioB));
|
||||
res.z = (MULT_FP(qa.z, ratioA) + MULT_FP(qb.z, ratioB));
|
||||
|
||||
exit:
|
||||
interpolationStep += ACTION_STEP_FP;
|
||||
return res;
|
||||
}
|
||||
|
||||
void
|
||||
handleAngle(uint8_t input)
|
||||
handleAngle(char input)
|
||||
{
|
||||
// TODO
|
||||
if (currentlyMoving == 0) {
|
||||
currentlyMoving = input;
|
||||
struct Quaternions tmp;
|
||||
switch (input) {
|
||||
case 'w':
|
||||
case 'W':
|
||||
tmp = GET_ROTATE_X_Q(M_PI_2);
|
||||
Target = multQ(GET_ROTATE_X_Q(FLOAT2FIXED(M_PI_2)), Current);
|
||||
break;
|
||||
case 'a':
|
||||
case 'A':
|
||||
tmp = GET_ROTATE_Y_Q(-M_PI_2);
|
||||
Target = multQ(GET_ROTATE_Y_Q(-FLOAT2FIXED(M_PI_2)), Current);
|
||||
break;
|
||||
case 's':
|
||||
case 'S':
|
||||
tmp = GET_ROTATE_X_Q(-M_PI_2);
|
||||
Target = multQ(GET_ROTATE_X_Q(-FLOAT2FIXED(M_PI_2)), Current);
|
||||
break;
|
||||
case 'd':
|
||||
case 'D':
|
||||
tmp = GET_ROTATE_Y_Q(M_PI_2);
|
||||
Target = multQ(GET_ROTATE_Y_Q(FLOAT2FIXED(M_PI_2)), Current);
|
||||
break;
|
||||
case 'q':
|
||||
case 'Q':
|
||||
tmp = GET_ROTATE_Z_Q(-M_PI_2);
|
||||
Target = multQ(GET_ROTATE_Z_Q(-FLOAT2FIXED(M_PI_2)), Current);
|
||||
break;
|
||||
case 'e':
|
||||
case 'E':
|
||||
tmp = GET_ROTATE_Z_Q(M_PI_2);
|
||||
Target = multQ(GET_ROTATE_Z_Q(FLOAT2FIXED(M_PI_2)), Current);
|
||||
break;
|
||||
default:
|
||||
currentlyMoving = 0;
|
||||
return;
|
||||
//TODO idle movement
|
||||
}
|
||||
multQ(&tmp, &Target);
|
||||
Target = tmp;
|
||||
normalize(&Target);
|
||||
} else {
|
||||
if (interpolationStep < (1 << FP) ) {
|
||||
interpolate(&Current, &Target);
|
||||
if (interpolationStep < (1 << fp) - ACTION_STEP_FP * 2) {
|
||||
Current = interpolate(Current, Target);
|
||||
normalize(&Current);
|
||||
}
|
||||
else {
|
||||
|
@ -501,33 +482,32 @@ handleAngle(uint8_t input)
|
|||
}
|
||||
}
|
||||
|
||||
uint8_t
|
||||
char
|
||||
getInput()
|
||||
{
|
||||
// TODO
|
||||
uint8_t c = 's';
|
||||
char c = 'd';
|
||||
handleAngle(c);
|
||||
return c;
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
main()
|
||||
{
|
||||
REG_DISPCNT = DISPCNT_BG_MODE(4) | DISPCNT_BG2_ENABLE;
|
||||
REG_DISPCNT = DISPCNT_BG_MODE(3) | DISPCNT_BG2_ENABLE;
|
||||
|
||||
Current = GET_ROTATE_Z_Q(0);
|
||||
init_colors();
|
||||
|
||||
while (1) {
|
||||
memset(MEM_VRAM_MODE4, 0, GBA_SCREEN_H * GBA_SCREEN_W);
|
||||
memset((uint16_t *)vertices, UINT16_MAX, sizeof(uint16_t) * NUM_FACES * 4 * 2);
|
||||
//zBuff is not correct data struct, need a map or smth
|
||||
memset((FIXED_POINT *)zBuffer, 0, NUM_FACES * 2 * sizeof(FIXED_POINT));
|
||||
memset(output, NUM_FACES, VWIDTH * VHEIGHT);
|
||||
memset(zBuffer, 0xffffffff, VWIDTH * VHEIGHT * sizeof(FIXED_POINT));
|
||||
|
||||
for (FIXED_POINT cubeX = -CUBE_WIDTH_FP + 1 * (1 << FP);
|
||||
cubeX <= CUBE_WIDTH_FP - 1 * (1 << FP); cubeX += STEP_FP - 2 * (1 << FP)) {
|
||||
for (FIXED_POINT cubeY = -CUBE_WIDTH_FP + 1 * (1 << FP);
|
||||
cubeY <= CUBE_WIDTH_FP - 1 * (1 << FP); cubeY += STEP_FP - 2 * (1 << FP)) {
|
||||
switch (frontFacingFace) {
|
||||
for (FIXED_POINT cubeX = -CUBE_WIDTH_FP + STEP_FP ;
|
||||
cubeX <= CUBE_WIDTH_FP - STEP_FP; cubeX += STEP_FP) {
|
||||
for (FIXED_POINT cubeY = -CUBE_WIDTH_FP + STEP_FP;
|
||||
cubeY <= CUBE_WIDTH_FP - STEP_FP; cubeY += STEP_FP) {
|
||||
switch (FACE_FRONT) {
|
||||
case FACE_FRONT:
|
||||
rotateCube(cubeX, cubeY, -CUBE_WIDTH_FP, FACE_FRONT);
|
||||
break;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue