diff --git a/gbafix/Makefile b/gbafix/Makefile index c6bbdf8..9668bee 100644 --- a/gbafix/Makefile +++ b/gbafix/Makefile @@ -4,7 +4,7 @@ NAME := gbafix -CC := gcc +# CC := gcc RM := rm -rf # `make V=` builds the binary in verbose build mode diff --git a/source/main.c b/source/main.c index 5d58d7a..c561d8b 100644 --- a/source/main.c +++ b/source/main.c @@ -3,541 +3,561 @@ // SPDX-FileContributor: Antonio Niño Díaz, 2022 #include +#include #define GBA_SCREEN_W 240 #define GBA_SCREEN_H 160 #define REG_DISPCNT *((volatile uint16_t *)0x04000000) -#define REG_KEYINPUT *((volatile uint16_t *)0x04000130) -#define DEFAULT_REG_KEYINPUT *((volatile uint16_t *)0x04000130) +#define REG_KEYINPUT *((volatile uint16_t *)0x04000130) +#define DEFAULT_REG_KEYINPUT *((volatile uint16_t *)0x04000130) #define KEY_DOWN_NOW(key) (~(REG_KEYINPUT) & key) -#define KEY_A 1 -#define KEY_B 2 -#define KEY_SELECT 3 -#define KEY_START 4 -#define KEY_DPAD_RIGHT 5 -#define KEY_DPAD_LEFT 6 -#define KEY_DPAD_UP 7 -#define KEY_DPAD_DOWN 8 -#define KEY_TRIGGER_LEFT 9 -#define KEY_TRIGGER_RIGHT 10 +#define KEY_A 1 +#define KEY_B 2 +#define KEY_SELECT 3 +#define KEY_START 4 +#define KEY_DPAD_RIGHT 5 +#define KEY_DPAD_LEFT 6 +#define KEY_DPAD_UP 7 +#define KEY_DPAD_DOWN 8 +#define KEY_TRIGGER_LEFT 9 +#define KEY_TRIGGER_RIGHT 10 #define DISPCNT_BG_MODE_MASK (0x7) #define DISPCNT_BG_MODE(n) ((n) & DISPCNT_BG_MODE_MASK) // 0 to 5 #define DISPCNT_BG2_ENABLE (1 << 10) -#define MEM_VRAM_MODE3_FB ((uint16_t *)0x06000000) +#define MEM_VRAM_MODE4 ((uint8_t *)buffer) + +#define SHOW_BACK 0x10; +#define FRONT_BUFFER (0x6000000) +#define BACK_BUFFER (0x600A000) + +#define PALETTE ((uint16_t *)0x5000000) +static volatile uint8_t lastPaletteIndex = 0; #define FIXED_POINT int32_t -#define fp 12 +#define FP 12 #define SHIFT_THRESHOLD 0.05 -#define SHIFT_THRESHOLD_FP ((1 << fp) * SHIFT_THRESHOLD) +#define SHIFT_THRESHOLD_FP ((1 << FP) * SHIFT_THRESHOLD) -#define FLOAT2FIXED(value) (int)((value) * (1 << fp)) -#define FIXED2FLOAT(value) ((value) / (float)(1 << fp)) +#define FLOAT2FIXED(value) (int)((value) * (1 << FP)) +#define FIXED2FLOAT(value) ((value) / (float)(1 << FP)) + +static uint8_t *buffer = (uint8_t *)FRONT_BUFFER; static inline uint16_t RGB15(uint16_t r, uint16_t g, uint16_t b) { - return (r & 0x1F) | ((g & 0x1F) << 5) | ((b & 0x1F) << 10); + return (r & 0x1F) | ((g & 0x1F) << 5) | ((b & 0x1F) << 10); +} + +void +flipBuffers() +{ + if(buffer == (uint8_t *)FRONT_BUFFER) { + REG_DISPCNT &= ~SHOW_BACK; + buffer = (uint8_t *)BACK_BUFFER; + } else { + REG_DISPCNT |= SHOW_BACK; + buffer = (uint8_t *)FRONT_BUFFER; + } } /////////////////////////////////////////////////////////// -#include #include #include #include #include #include -#define VWIDTH 50 -#define VHEIGHT 50 #define CUBE_WIDTH 10 -#define CUBE_WIDTH_FP ((1 << fp) * CUBE_WIDTH) +#define CUBE_WIDTH_FP ((1 << FP) * CUBE_WIDTH) enum faces { - FACE_FRONT = 0, - FACE_LEFT, - FACE_RIGHT, - FACE_BOTTOM, - FACE_TOP, - FACE_BACK, - NUM_FACES, + FACE_FRONT = 0, + FACE_LEFT, + FACE_RIGHT, + FACE_BOTTOM, + FACE_TOP, + FACE_BACK, + NUM_FACES, }; -#define STEP 5 -#define STEP_FP ((1 << fp) * STEP) +#define STEP 20 +#define STEP_FP ((1 << FP) * STEP) #define ACTION_STEP 0.1 -#define ACTION_STEP_FP ((1 << fp) * ACTION_STEP) +#define ACTION_STEP_FP ((1 << FP) * ACTION_STEP) -#define PITCH_STEP 0.05 -#define ROLL_STEP 0.05 -#define YAW_STEP 0.05 +#define SCALE 5 // how much is our initial render scaled -volatile FIXED_POINT K1 = 60; -volatile FIXED_POINT K2 = (2 * CUBE_WIDTH) + 20; +#define K1 (20) +#define K2 (2 * CUBE_WIDTH + 10) - -#define MULT_FP(a,b) ((a * b) >> fp) +#define MULT_FP(a, b) ((a * b) >> FP) #define SQ(n) (n * n) #define SQ_FP(n) (MULT_FP(n, n)) -#define COORD2INDEX(x, y) (y * VWIDTH + x) -#define COUPLE2INDEX(x) (COORD2INDEX(x[0], x[1])) - -#define GET_ROTATE_X_Q(a) ({ float _a = (FIXED2FLOAT(a)) ; \ - struct Quaternions q = {}; q.w = FLOAT2FIXED(cos(_a * .5)); \ - q.x = FLOAT2FIXED(sin(_a * .5)); q; }) -#define GET_ROTATE_Y_Q(a) ({ float _a = (FIXED2FLOAT(a)) ; \ - struct Quaternions q = {}; q.w = FLOAT2FIXED(cos(_a * .5)); \ - q.y = FLOAT2FIXED(sin(_a * .5)); q; }) -#define GET_ROTATE_Z_Q(a) ({ float _a = (FIXED2FLOAT(a)) ; \ - struct Quaternions q = {}; q.w = FLOAT2FIXED(cos(_a * .5)); \ - q.z = FLOAT2FIXED(sin(_a * .5)); q; }) +#define GET_ROTATE_X_Q(a) ({ float _a = (a) ; \ + struct Quaternions q = {}; q.w = FLOAT2FIXED(cos(_a * .5)); \ + q.x = FLOAT2FIXED(sin(_a * .5)); q; }) +#define GET_ROTATE_Y_Q(a) ({ float _a = (a) ; \ + struct Quaternions q = {}; q.w = FLOAT2FIXED(cos(_a * .5)); \ + q.y = FLOAT2FIXED(sin(_a * .5)); q; }) +#define GET_ROTATE_Z_Q(a) ({ float _a = (a) ; \ + struct Quaternions q = {}; q.w = FLOAT2FIXED(cos(_a * .5)); \ + q.z = FLOAT2FIXED(sin(_a * .5)); q; }) //TODO Idle animations #define IS_IDLE (Idle.x || Idle.y || Idle.z) #define RESET_IDLE {Idle.x = 0; Idle.y = 0; Idle.z = 0;} +void +init_colors() +{ + const uint16_t color_order[NUM_FACES + 1] = { + RGB15(0, 0, 0), + RGB15(31, 0, 0), + RGB15(0, 31, 0), + RGB15(0, 0, 31), + RGB15(0, 31, 31), + RGB15(31, 31, 0), + RGB15(31, 0, 31), + }; + + for ( ; lastPaletteIndex <= NUM_FACES ; ++lastPaletteIndex) + PALETTE[lastPaletteIndex] = color_order[lastPaletteIndex]; +} + +uint8_t +chooseColor(uint8_t c) +{ + if (c >= 0 && c < NUM_FACES) + return c + 1; // palette 0 is bg + else + return 0; +} + +void +putPx(uint16_t x, uint16_t y, uint8_t c) +{ + for (uint8_t i = 0 ; i < SCALE ; ++i) + for (uint8_t j = 0 ; j < SCALE ; ++j) { + uint16_t pos = GBA_SCREEN_W * (y * SCALE + j) + x * SCALE + i; + buffer[pos] = chooseColor(c); + } +} + struct { - char x; - char y; - char z; + uint8_t x; + uint8_t y; + uint8_t z; } Idle; struct Quaternions { - FIXED_POINT w; - FIXED_POINT x; - FIXED_POINT y; - FIXED_POINT z; + FIXED_POINT w; + FIXED_POINT x; + FIXED_POINT y; + FIXED_POINT z; } Target, Current; -FIXED_POINT interpolationStep = 0; -FIXED_POINT zBuffer[VHEIGHT * VWIDTH]; -char output[VHEIGHT * VWIDTH]; +static FIXED_POINT interpolationStep = 0; +static volatile uint16_t vertices[NUM_FACES * 2 * 4]; +static volatile FIXED_POINT zBuffer[NUM_FACES * 2]; -static volatile char shouldBreak = 1; -static volatile char currentlyMoving = 0; -static volatile char currentCountR = 0; -static volatile char frontFacingFace = FACE_FRONT; +static volatile uint8_t shouldBreak = 1; +static volatile uint8_t currentlyMoving = 0; +static volatile uint8_t currentCountR = 0; +static volatile uint8_t frontFacingFace = FACE_FRONT; void normalize(struct Quaternions *q) { - float n = sqrt(FIXED2FLOAT(SQ_FP(q->w) + SQ_FP(q->x) + - SQ_FP(q->y) + SQ_FP(q->z))); - if (n == 0) - return; - q->w = FLOAT2FIXED(FIXED2FLOAT(q->w) / n); - q->x = FLOAT2FIXED(FIXED2FLOAT(q->x) / n); - q->y = FLOAT2FIXED(FIXED2FLOAT(q->y) / n); - q->z = FLOAT2FIXED(FIXED2FLOAT(q->z) / n); + float n = sqrt(FIXED2FLOAT(SQ_FP(q->w) + SQ_FP(q->x) + + SQ_FP(q->y) + SQ_FP(q->z))); + if (n == 0.|| n == 1.) + return; + + q->w = FLOAT2FIXED(FIXED2FLOAT(q->w) / n); + q->x = FLOAT2FIXED(FIXED2FLOAT(q->x) / n); + q->y = FLOAT2FIXED(FIXED2FLOAT(q->y) / n); + q->z = FLOAT2FIXED(FIXED2FLOAT(q->z) / n); } struct Quaternions -mult(struct Quaternions q, FIXED_POINT x, FIXED_POINT y, FIXED_POINT z) +mult(struct Quaternions *q, FIXED_POINT x, FIXED_POINT y, FIXED_POINT z) { - //p = q * p * qbar - struct Quaternions res; + //p = q * p * qbar + struct Quaternions res; - res.w = 0; - res.x = MULT_FP(x, (SQ_FP(q.w) + SQ_FP(q.x) - SQ_FP(q.y) - SQ_FP(q.z))) - + (MULT_FP(y, (MULT_FP(q.x, q.y) - MULT_FP(q.w, q.z))) * 2) - + (MULT_FP(z, (MULT_FP(q.x, q.z) + MULT_FP(q.w, q.y))) * 2); + // << 1 <=> * 2 + res.w = 0; + res.x = MULT_FP(x, (SQ_FP(q->w) + SQ_FP(q->x) - SQ_FP(q->y) - SQ_FP(q->z))) + + (MULT_FP(y, (MULT_FP(q->x, q->y) - MULT_FP(q->w, q->z))) << 1) + + (MULT_FP(z, (MULT_FP(q->x, q->z) + MULT_FP(q->w, q->y))) << 1); - res.y = (MULT_FP(x, (MULT_FP(q.x, q.y) + MULT_FP(q.w,q.z))) * 2) - + (MULT_FP(y, (SQ_FP(q.w) - SQ_FP(q.x) + SQ_FP(q.y) - SQ_FP(q.z)))) - + (MULT_FP(z, (MULT_FP(q.y, q.z) - MULT_FP(q.w, q.x))) << 2); + res.y = (MULT_FP(x, (MULT_FP(q->x, q->y) + MULT_FP(q->w,q->z))) << 1) + + (MULT_FP(y, (SQ_FP(q->w) - SQ_FP(q->x) + SQ_FP(q->y) - SQ_FP(q->z)))) + + (MULT_FP(z, (MULT_FP(q->y, q->z) - MULT_FP(q->w, q->x))) << 1); - res.z = (MULT_FP(x, (MULT_FP(q.x, q.z) - MULT_FP(q.w, q.y)))* 2) - + (MULT_FP(y, (MULT_FP(q.y, q.z) + MULT_FP(q.w, q.x))) * 2) - + MULT_FP(z, (SQ_FP(q.w) - SQ_FP(q.x) - SQ_FP(q.y) + SQ_FP(q.z))); + res.z = (MULT_FP(x, (MULT_FP(q->x, q->z) - MULT_FP(q->w, q->y))) << 1) + + (MULT_FP(y, (MULT_FP(q->y, q->z) + MULT_FP(q->w, q->x))) << 1) + + MULT_FP(z, (SQ_FP(q->w) - SQ_FP(q->x) - SQ_FP(q->y) + SQ_FP(q->z))); - return res; + return res; } -struct Quaternions -multQ(struct Quaternions p, struct Quaternions q) +// res in quat p +void +multQ(struct Quaternions *p, struct Quaternions *q) { - if (p.x <= SHIFT_THRESHOLD_FP && p.x >= -SHIFT_THRESHOLD_FP - && p.y <= SHIFT_THRESHOLD_FP && p.y >= -SHIFT_THRESHOLD_FP - && p.z <= SHIFT_THRESHOLD_FP && p.z >= -SHIFT_THRESHOLD_FP) - return q; + if (p->x <= SHIFT_THRESHOLD_FP && p->x >= -SHIFT_THRESHOLD_FP + && p->y <= SHIFT_THRESHOLD_FP && p->y >= -SHIFT_THRESHOLD_FP + && p->z <= SHIFT_THRESHOLD_FP && p->z >= -SHIFT_THRESHOLD_FP) { + p = q; + return; + } - if (q.x <= SHIFT_THRESHOLD_FP && q.x >= -SHIFT_THRESHOLD_FP - && q.y <= SHIFT_THRESHOLD_FP && q.y >= -SHIFT_THRESHOLD_FP - && q.z <= SHIFT_THRESHOLD_FP && q.z >= -SHIFT_THRESHOLD_FP) - return p; + if (q->x <= SHIFT_THRESHOLD_FP && q->x >= -SHIFT_THRESHOLD_FP + && q->y <= SHIFT_THRESHOLD_FP && q->y >= -SHIFT_THRESHOLD_FP + && q->z <= SHIFT_THRESHOLD_FP && q->z >= -SHIFT_THRESHOLD_FP) + return; - struct Quaternions res = { - .w = MULT_FP(p.w, q.w) - MULT_FP(p.x, q.x) - - MULT_FP(p.y, q.y) - MULT_FP(p.z, q.z), - .x = MULT_FP(p.w, q.x) + MULT_FP(p.x, q.w) + - MULT_FP(p.y, q.z) - MULT_FP(p.z, q.y), - .y = MULT_FP(p.w, q.y) - MULT_FP(p.x, q.z) + - MULT_FP(p.y, q.w) + MULT_FP(p.z, q.x), - .z = MULT_FP(p.w, q.z) + MULT_FP(p.x, q.y) - - MULT_FP(p.y, q.x) + MULT_FP(p.z, q.w), - }; - - return res; + FIXED_POINT w = MULT_FP(p->w, q->w) - MULT_FP(p->x, q->x) - + MULT_FP(p->y, q->y) - MULT_FP(p->z, q->z); + FIXED_POINT x = MULT_FP(p->w, q->x) + MULT_FP(p->x, q->w) + + MULT_FP(p->y, q->z) - MULT_FP(p->z, q->y); + FIXED_POINT y = MULT_FP(p->w, q->y) - MULT_FP(p->x, q->z) + + MULT_FP(p->y, q->w) + MULT_FP(p->z, q->x); + FIXED_POINT z = MULT_FP(p->w, q->z) + MULT_FP(p->x, q->y) - + MULT_FP(p->y, q->x) + MULT_FP(p->z, q->w); + p->w = w; + p->x = x; + p->y = y; + p->z = z; } -uint16_t -chooseColor(char c) -{ - switch (c) { - case FACE_FRONT: - return RGB15(31, 0, 0); - case FACE_BACK: - return RGB15(31, 15, 31); - case FACE_BOTTOM: - return RGB15(31, 0, 31); - case FACE_LEFT: - return RGB15(0, 0, 31); - case FACE_RIGHT: - return RGB15(0, 31, 31); - case FACE_TOP: - return RGB15(0, 31, 0); - default: - // BG - return RGB15(31, 31, 31); - } -} -char +uint8_t chooseMainFace() { - int total = 0; - int faces[NUM_FACES] = {0}; - - for (int k = 0; k < VWIDTH * VHEIGHT; ++k) - if (output[k] >= 0 && output[k] < NUM_FACES) { - faces[output[k]]++; - ++total; - } - - int max = 0, idx = 0; - for (int k = 0; k < NUM_FACES; ++k) - if (faces[k] > max) { - max = faces[k]; - idx = k; - } - - frontFacingFace = max > total * 0.9 ? idx : -1; - return frontFacingFace; + // TODO + return 0; } -char -isInQuad(char curr[2], char top[2], char left[2], - char right[2], char bot[2]) +uint8_t +isInQuad(const uint16_t x, const uint16_t y, uint8_t current_face) { - char *points[4] = {top, left, bot, right}; + uint16_t *points = (uint16_t *)&vertices[current_face * 8]; - char pos = 0, neg = 0; - char x = curr[0]; - char y = curr[1];; - int d; + uint8_t pos = 0, neg = 0; + int32_t d; - for (char i = 0; i < 4; ++i) { - if (points[i][0] == curr[0] && points[i][1] == curr[1]) - return 1; + for (uint8_t i = 0; i < 4; ++i) { + if (points[2 * i] == x && points[2 * i + 1] == y) + return 1; - //Form a segment between the i'th point - char x1 = points[i][0]; - char y1 = points[i][1]; + //Form a segment between the i'th point + uint16_t x1 = points[2 * i]; + uint16_t y1 = points[2 * i + 1]; - //And the i+1'th, or if i is the last, with the first point - char i2 = (i + 1) % 4; + //And the i+1'th, or if i is the last, with the first point + uint8_t i2 = (i + 1) % 4; - char x2 = points[i2][0]; - char y2 = points[i2][1]; + uint16_t x2 = points[2 * i2]; + uint16_t y2 = points[2 * i2 + 1]; + //Compute the cross product + d = (x - x1) * (y2 - y1) - (y - y1) * (x2 - x1); - //Compute the cross product - d = (x - x1) * (y2 - y1) - (y - y1) * (x2 - x1); + if (d > 0) ++pos; + if (d < 0) ++neg; - if (d > 0) ++pos; - if (d < 0) ++neg; + //If the sign changes, then point is outside + if (pos > 0 && neg > 0) + return 0; + } - //If the sign changes, then point is outside - if (pos > 0 && neg > 0) - return 0; - } + return 1; +} + +// the 4 vertices rendered do not make a convex quad +// we have to switch 2 vertices for that +// only works because we render 4 points left to right +void +makeConvex(uint16_t *points) +{ + // little hack + + uint16_t tmpX = points[6], tmpY = points[7]; + points[6] = points[4]; + points[7] = points[5]; + points[4] = tmpX; + points[5] = tmpY; - return 1; } void -fill_quads(char current_face, char top[2], char left[2], - char right[2], char bot[2]) +fillQuads(uint8_t current_face) { - if (current_face != 0) return; - output[COUPLE2INDEX(top)] = RGB15(0, 0, 15); - output[COUPLE2INDEX(left)] = RGB15(0, 0, 15); - output[COUPLE2INDEX(right)] = RGB15(0, 0, 15); + makeConvex((uint16_t *)&vertices[current_face * 8]); - for (int y = top[1] ; y < bot[1] ; ++y) { - for (int x = left[0] ; x < right[0] ; ++x) { - char curr[2] = {x, y}; - if (isInQuad(curr, top, left, right, bot)) - //zbuffer issue - {} - //output[COORD2INDEX(x, y)] = current_face; - } - } + uint16_t top = UINT16_MAX, bot = 0, left = UINT16_MAX, right = 0; + for (uint8_t k = 0 ; k < 8 ; ++k) { + const uint16_t item = vertices[current_face * 8 + k]; + + if (k & 1) { + if (item > bot) + bot = item; + if (item < top) + top = item; + } else { + if (item > right) + right = item; + if (item < left) + left = item; + } + } + + for (uint16_t y = top ; y <= bot; ++y) { + for (uint16_t x = left ; x <= right ; ++x) { + if (isInQuad(x, y, current_face)) + putPx(x, y, current_face); + } + } +} + +uint8_t +detect(uint8_t current_face) +{ + for (uint8_t k = current_face * 8; k < current_face * 8 + 8; ++k) + if (vertices[k] == UINT16_MAX) + return 0; + + return 1; +} + +int +comp(const void *p1, const void *p2) { + FIXED_POINT left = *(const FIXED_POINT *)p1; + FIXED_POINT right = *(const FIXED_POINT *)p2; + + return ((left > right) - (left < right)); } void -detect_and_fill_quads() +detectAndFillQuads() { - for (int current_face = 0 ; current_face < NUM_FACES ; ++current_face) { - char last_top [2] = {VWIDTH, VHEIGHT}; - char last_left[2] = {VWIDTH, 0}; - char last_right [2] = {0, 0}; - char last_bot[2] = {0, 0}; - char top [2] = {VWIDTH, VHEIGHT}; - char left[2] = {VWIDTH, 0}; - char right [2] = {0, 0}; - char bot[2] = {0, 0}; - for (char y = 0; y < VHEIGHT; ++y) { - for (char x = 0; x < VWIDTH; ++x) { - if (output[COORD2INDEX(x, y)] != current_face) - continue; - if (x <= left[0]) { - left[0] = x; - left[1] = y; - } - if (y <= top[1]) { - top[0] = x; - top[1] = y; - } - if (x >= right[0]) { - right[0] = x; - right[1] = y; - } - if (y >= bot[1]) { - bot[0] = x; - bot[1] = y; - } - } - } - fill_quads(current_face, top, left, right, bot); - } - + qsort((FIXED_POINT *)zBuffer, NUM_FACES, 2 * sizeof(FIXED_POINT), comp); + for (uint8_t idx = 0 ; idx < NUM_FACES ; ++idx) { + char ch = zBuffer[2 * idx + 1]; + if (detect(ch)) + fillQuads(ch); + } } void printAscii() { - // TODO scale up - MEM_VRAM_MODE3_FB[120 + 80 * GBA_SCREEN_W] = RGB15(currentCountR, 31 - currentCountR, 0); - MEM_VRAM_MODE3_FB[136 + 80 * GBA_SCREEN_W] = RGB15(currentCountR, 31 - currentCountR, 0); - MEM_VRAM_MODE3_FB[120 + 96 * GBA_SCREEN_W] = RGB15(currentCountR, 31 - currentCountR, 0); - currentCountR = currentCountR == 31 ? 0 : 31; - - detect_and_fill_quads(); - - for (int i = 0; i < VHEIGHT; ++i) { - for (int j = 0; j < VWIDTH; ++j) { - char prevc = 0; - char *c = output + (i * VWIDTH + j); - MEM_VRAM_MODE3_FB[(i + 50) * GBA_SCREEN_W + j + 50] = chooseColor(*c); - } - } + detectAndFillQuads(); + flipBuffers(); } void -rotateCube(FIXED_POINT cubeX, FIXED_POINT cubeY, FIXED_POINT cubeZ, char ch) +rotateCube(FIXED_POINT cubeX, FIXED_POINT cubeY, FIXED_POINT cubeZ, uint8_t ch) { - struct Quaternions q = mult(Current, cubeX, cubeY, cubeZ); + struct Quaternions q = mult(&Current, cubeX, cubeY, cubeZ); - int x = q.x >> fp; - int y = q.y >> fp; + uint32_t x = q.x >> FP; + uint32_t y = q.y >> FP; - // not fixed point yet!! - float invZ = (1 << fp) / (float)(q.z + K2 * (1 << fp)); + // not fixed point yet!! + float invZ = (1 << FP) / (float)(q.z + K2 * (1 << FP)); - int screenX = (int)(VWIDTH * 0.5) + (int)((x) * K1) * invZ; - int screenY = (int)(VHEIGHT * 0.5) + (int)((y) * K1) * invZ; - //TODO luminescence + int32_t screenX = CUBE_WIDTH * 2 + (int32_t)((x) * K1) * invZ; + int32_t screenY = CUBE_WIDTH * 2 + (int32_t)((y) * K1) * invZ; + //TODO luminescence - if (screenX > VWIDTH || screenX < 0) return; + if (screenX > GBA_SCREEN_W || screenX < 0 + || screenY > GBA_SCREEN_H || screenY < 0) return; - int idx = screenY * VWIDTH + screenX; - if (idx >= 0 && idx < VWIDTH * VHEIGHT) { - invZ = FLOAT2FIXED(invZ); - if (zBuffer[idx] < invZ) { - zBuffer[idx] = invZ; - output[idx] = ch; - } - } + FIXED_POINT invZFixed = FLOAT2FIXED(invZ); + uint8_t firstEmptyVertex = ch * 8; + for ( ; vertices[firstEmptyVertex] != UINT16_MAX + && firstEmptyVertex - ch * 8 < 8 ; firstEmptyVertex+=2); + + vertices[firstEmptyVertex] = screenX; + vertices[firstEmptyVertex + 1] = screenY; + + if (zBuffer[2 * ch] < invZFixed) { + zBuffer[2 * ch] = invZFixed; + zBuffer[2 * ch + 1] = ch; + } } -struct Quaternions -interpolate(struct Quaternions qa, struct Quaternions qb) +void +interpolate(struct Quaternions *qa, struct Quaternions *qb) { - frontFacingFace = -1; - struct Quaternions res; - float cosHalfTheta = - FIXED2FLOAT(MULT_FP(qa.w, qb.w) + - MULT_FP(qa.x, qb.x) + - MULT_FP(qa.y, qb.y) + - MULT_FP(qa.z, qb.z)); - //if qa = qb or qa = -qb then theta = 0 and we can return qa - if (cosHalfTheta >= 1.0 || cosHalfTheta <= -1.0) { - res.w = qa.w; - res.x = qa.x; - res.y = qa.y; - res.z = qa.z; - goto exit; - } - if (cosHalfTheta < 0) { - qb.w = -qb.w; - qb.x = -qb.x; - qb.y = -qb.y; - qb.z = qb.z; - cosHalfTheta = -cosHalfTheta; - } + frontFacingFace = -1; + float cosHalfTheta = + FIXED2FLOAT(MULT_FP(qa->w, qb->w) + + MULT_FP(qa->x, qb->x) + + MULT_FP(qa->y, qb->y) + + MULT_FP(qa->z, qb->z)); + //if qa = qb or qa = -qb then theta = 0 and we can return qa + if (cosHalfTheta >= 1.0 || cosHalfTheta <= -1.0) { + goto exit; + } + if (cosHalfTheta < 0) { + qb->w = -qb->w; + qb->x = -qb->x; + qb->y = -qb->y; + qb->z = qb->z; + cosHalfTheta = -cosHalfTheta; + } - float halfTheta = acos(cosHalfTheta); - float sinHalfTheta = sqrt(1.0 - cosHalfTheta * cosHalfTheta); - //if theta = 180 degrees then result is not fully defined - // we could rotate around any axis normal to qa or qb - if (sinHalfTheta < 0.001 && sinHalfTheta > -0.001) { - res.w = ((qa.w >> 1) + (qb.w >> 1)); - res.x = ((qa.x >> 1) + (qb.x >> 1)); - res.y = ((qa.y >> 1) + (qb.y >> 1)); - res.z = ((qa.z >> 1) + (qb.z >> 1)); - goto exit; - } + float halfTheta = acos(cosHalfTheta); + float sinHalfTheta = sqrt(1.0 - cosHalfTheta * cosHalfTheta); + //if theta = 180 degrees then result is not fully defined + // we could rotate around any axis normal to qa or qb + if (sinHalfTheta < 0.01 && sinHalfTheta > -0.01) { + qa->w = ((qa->w >> 1) + (qb->w >> 1)); + qa->x = ((qa->x >> 1) + (qb->x >> 1)); + qa->y = ((qa->y >> 1) + (qb->y >> 1)); + qa->z = ((qa->z >> 1) + (qb->z >> 1)); + goto exit; + } - FIXED_POINT ratioA = FLOAT2FIXED(sin((1 - FIXED2FLOAT(interpolationStep)) * halfTheta) / sinHalfTheta); - FIXED_POINT ratioB = FLOAT2FIXED(sin(FIXED2FLOAT(interpolationStep) * halfTheta) / sinHalfTheta); + FIXED_POINT ratioA = FLOAT2FIXED(sin((1 - FIXED2FLOAT(interpolationStep)) * halfTheta) / sinHalfTheta); + FIXED_POINT ratioB = FLOAT2FIXED(sin(FIXED2FLOAT(interpolationStep) * halfTheta) / sinHalfTheta); - res.w = (MULT_FP(qa.w, ratioA) + MULT_FP(qb.w, ratioB)); - res.x = (MULT_FP(qa.x, ratioA) + MULT_FP(qb.x, ratioB)); - res.y = (MULT_FP(qa.y, ratioA) + MULT_FP(qb.y, ratioB)); - res.z = (MULT_FP(qa.z, ratioA) + MULT_FP(qb.z, ratioB)); + qa->w = (MULT_FP(qa->w, ratioA) + MULT_FP(qb->w, ratioB)); + qa->x = (MULT_FP(qa->x, ratioA) + MULT_FP(qb->x, ratioB)); + qa->y = (MULT_FP(qa->y, ratioA) + MULT_FP(qb->y, ratioB)); + qa->z = (MULT_FP(qa->z, ratioA) + MULT_FP(qb->z, ratioB)); exit: - interpolationStep += ACTION_STEP_FP; - return res; + interpolationStep += ACTION_STEP_FP; } void -handleAngle(char input) +handleAngle(uint8_t input) { - // TODO - if (currentlyMoving == 0) { - currentlyMoving = input; - switch (input) { - case 'w': - case 'W': - Target = multQ(GET_ROTATE_X_Q(FLOAT2FIXED(M_PI_2)), Current); - break; - case 'a': - case 'A': - Target = multQ(GET_ROTATE_Y_Q(-FLOAT2FIXED(M_PI_2)), Current); - break; - case 's': - case 'S': - Target = multQ(GET_ROTATE_X_Q(-FLOAT2FIXED(M_PI_2)), Current); - break; - case 'd': - case 'D': - Target = multQ(GET_ROTATE_Y_Q(FLOAT2FIXED(M_PI_2)), Current); - break; - case 'q': - case 'Q': - Target = multQ(GET_ROTATE_Z_Q(-FLOAT2FIXED(M_PI_2)), Current); - break; - case 'e': - case 'E': - Target = multQ(GET_ROTATE_Z_Q(FLOAT2FIXED(M_PI_2)), Current); - break; - default: - currentlyMoving = 0; - //TODO idle movement - } - normalize(&Target); - } else { - if (interpolationStep < (1 << fp) - ACTION_STEP_FP * 2) { - Current = interpolate(Current, Target); - normalize(&Current); - } - else { - Current = Target; - interpolationStep = 0; - currentlyMoving = 0; - } - } + // TODO + if (currentlyMoving == 0) { + currentlyMoving = input; + struct Quaternions tmp; + switch (input) { + case 'w': + case 'W': + tmp = GET_ROTATE_X_Q(M_PI_2); + break; + case 'a': + case 'A': + tmp = GET_ROTATE_Y_Q(-M_PI_2); + break; + case 's': + case 'S': + tmp = GET_ROTATE_X_Q(-M_PI_2); + break; + case 'd': + case 'D': + tmp = GET_ROTATE_Y_Q(M_PI_2); + break; + case 'q': + case 'Q': + tmp = GET_ROTATE_Z_Q(-M_PI_2); + break; + case 'e': + case 'E': + tmp = GET_ROTATE_Z_Q(M_PI_2); + break; + default: + currentlyMoving = 0; + return; + //TODO idle movement + } + multQ(&tmp, &Target); + Target = tmp; + normalize(&Target); + } else { + if (interpolationStep < (1 << FP) ) { + interpolate(&Current, &Target); + normalize(&Current); + } + else { + Current = Target; + interpolationStep = 0; + currentlyMoving = 0; + } + } } -char +uint8_t getInput() { - // TODO - char c = 'd'; - handleAngle(c); - return c; + // TODO + uint8_t c = 's'; + handleAngle(c); + return c; } - int main() { - REG_DISPCNT = DISPCNT_BG_MODE(3) | DISPCNT_BG2_ENABLE; + REG_DISPCNT = DISPCNT_BG_MODE(4) | DISPCNT_BG2_ENABLE; + Current = GET_ROTATE_Z_Q(0); + init_colors(); - Current = GET_ROTATE_Z_Q(0); + while (1) { + memset(MEM_VRAM_MODE4, 0, GBA_SCREEN_H * GBA_SCREEN_W); + memset((uint16_t *)vertices, UINT16_MAX, sizeof(uint16_t) * NUM_FACES * 4 * 2); + //zBuff is not correct data struct, need a map or smth + memset((FIXED_POINT *)zBuffer, 0, NUM_FACES * 2 * sizeof(FIXED_POINT)); - while (1) { - memset(output, NUM_FACES, VWIDTH * VHEIGHT); - memset(zBuffer, 0xffffffff, VWIDTH * VHEIGHT * sizeof(FIXED_POINT)); + for (FIXED_POINT cubeX = -CUBE_WIDTH_FP + 1 * (1 << FP); + cubeX <= CUBE_WIDTH_FP - 1 * (1 << FP); cubeX += STEP_FP - 2 * (1 << FP)) { + for (FIXED_POINT cubeY = -CUBE_WIDTH_FP + 1 * (1 << FP); + cubeY <= CUBE_WIDTH_FP - 1 * (1 << FP); cubeY += STEP_FP - 2 * (1 << FP)) { + switch (frontFacingFace) { + case FACE_FRONT: + rotateCube(cubeX, cubeY, -CUBE_WIDTH_FP, FACE_FRONT); + break; + case FACE_LEFT: + rotateCube(-CUBE_WIDTH_FP, cubeX, cubeY, FACE_LEFT); + break; + case FACE_RIGHT: + rotateCube(CUBE_WIDTH_FP, cubeX, cubeY, FACE_RIGHT); + break; + case FACE_BOTTOM: + rotateCube(cubeX, -CUBE_WIDTH_FP, cubeY, FACE_BOTTOM); + break; + case FACE_TOP: + rotateCube(cubeX, CUBE_WIDTH_FP, cubeY, FACE_TOP); + break; + case FACE_BACK: + rotateCube(cubeX, cubeY, CUBE_WIDTH_FP, FACE_BACK); + break; + default: // idk render all + rotateCube(cubeX, cubeY, -CUBE_WIDTH_FP, FACE_FRONT); + rotateCube(-CUBE_WIDTH_FP, cubeX, cubeY, FACE_LEFT); + rotateCube(CUBE_WIDTH_FP, cubeX, cubeY, FACE_RIGHT); + rotateCube(cubeX, -CUBE_WIDTH_FP, cubeY, FACE_TOP); + rotateCube(cubeX, CUBE_WIDTH_FP, cubeY, FACE_BOTTOM); + rotateCube(cubeX, cubeY, CUBE_WIDTH_FP, FACE_BACK); + } + } + } - for (FIXED_POINT cubeX = -CUBE_WIDTH_FP + STEP_FP ; - cubeX <= CUBE_WIDTH_FP - STEP_FP; cubeX += STEP_FP) { - for (FIXED_POINT cubeY = -CUBE_WIDTH_FP + STEP_FP; - cubeY <= CUBE_WIDTH_FP - STEP_FP; cubeY += STEP_FP) { - switch (FACE_FRONT) { - case FACE_FRONT: - rotateCube(cubeX, cubeY, -CUBE_WIDTH_FP, FACE_FRONT); - break; - case FACE_LEFT: - rotateCube(-CUBE_WIDTH_FP, cubeX, cubeY, FACE_LEFT); - break; - case FACE_RIGHT: - rotateCube(CUBE_WIDTH_FP, cubeX, cubeY, FACE_RIGHT); - break; - case FACE_BOTTOM: - rotateCube(cubeX, -CUBE_WIDTH_FP, cubeY, FACE_BOTTOM); - break; - case FACE_TOP: - rotateCube(cubeX, CUBE_WIDTH_FP, cubeY, FACE_TOP); - break; - case FACE_BACK: - rotateCube(cubeX, cubeY, CUBE_WIDTH_FP, FACE_BACK); - break; - default: // idk render all - rotateCube(cubeX, cubeY, -CUBE_WIDTH_FP, FACE_FRONT); - rotateCube(-CUBE_WIDTH_FP, cubeX, cubeY, FACE_LEFT); - rotateCube(CUBE_WIDTH_FP, cubeX, cubeY, FACE_RIGHT); - rotateCube(cubeX, -CUBE_WIDTH_FP, cubeY, FACE_TOP); - rotateCube(cubeX, CUBE_WIDTH_FP, cubeY, FACE_BOTTOM); - rotateCube(cubeX, cubeY, CUBE_WIDTH_FP, FACE_BACK); - } - } - } - - printAscii(); - getInput(); - } + printAscii(); + getInput(); + } }