fix: [WIP] IT "WORKS"

This commit is contained in:
violette 2025-09-05 08:25:22 -04:00
parent 28295eb8d6
commit f2bb638c0b

View file

@ -10,20 +10,20 @@
#define REG_DISPCNT *((volatile uint16_t *)0x04000000) #define REG_DISPCNT *((volatile uint16_t *)0x04000000)
#define REG_KEYINPUT *((volatile uint16_t *)0x04000130) #define REG_KEYINPUT *((volatile uint16_t *)0x04000130)
#define DEFAULT_REG_KEYINPUT *((volatile uint16_t *)0x04000130) #define DEFAULT_REG_KEYINPUT *((volatile uint16_t *)0x04000130)
#define KEY_DOWN_NOW(key) (~(REG_KEYINPUT) & key) #define KEY_DOWN_NOW(key) (~(REG_KEYINPUT) & key)
#define KEY_A 1 #define KEY_A 1
#define KEY_B 2 #define KEY_B 2
#define KEY_SELECT 3 #define KEY_SELECT 3
#define KEY_START 4 #define KEY_START 4
#define KEY_DPAD_RIGHT 5 #define KEY_DPAD_RIGHT 5
#define KEY_DPAD_LEFT 6 #define KEY_DPAD_LEFT 6
#define KEY_DPAD_UP 7 #define KEY_DPAD_UP 7
#define KEY_DPAD_DOWN 8 #define KEY_DPAD_DOWN 8
#define KEY_TRIGGER_LEFT 9 #define KEY_TRIGGER_LEFT 9
#define KEY_TRIGGER_RIGHT 10 #define KEY_TRIGGER_RIGHT 10
#define DISPCNT_BG_MODE_MASK (0x7) #define DISPCNT_BG_MODE_MASK (0x7)
#define DISPCNT_BG_MODE(n) ((n) & DISPCNT_BG_MODE_MASK) // 0 to 5 #define DISPCNT_BG_MODE(n) ((n) & DISPCNT_BG_MODE_MASK) // 0 to 5
@ -52,7 +52,7 @@ static uint8_t *buffer = (uint8_t *)FRONT_BUFFER;
static inline uint16_t static inline uint16_t
RGB15(uint16_t r, uint16_t g, uint16_t b) RGB15(uint16_t r, uint16_t g, uint16_t b)
{ {
return (r & 0x1F) | ((g & 0x1F) << 5) | ((b & 0x1F) << 10); return (r & 0x1F) | ((g & 0x1F) << 5) | ((b & 0x1F) << 10);
} }
void void
@ -68,17 +68,12 @@ flipBuffers()
} }
void void
putPx(uint8_t x, uint8_t y, uint16_t c) putPx(uint16_t x, uint16_t y, uint8_t c)
{ {
uint16_t pos = (GBA_SCREEN_W * y + x) >> 1; uint16_t pos = (GBA_SCREEN_W * y + x);
uint8_t px = buffer[pos]; buffer[pos] = c;
if (y & 1) {
buffer[pos] = c << 8;
buffer[pos] = (c << 8) | (px & 0x00ff);
} else {
buffer[pos] = (px & 0xff00) | c;
}
} }
/////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////
#include <math.h> #include <math.h>
@ -93,13 +88,13 @@ putPx(uint8_t x, uint8_t y, uint16_t c)
#define CUBE_WIDTH_FP ((1 << FP) * CUBE_WIDTH) #define CUBE_WIDTH_FP ((1 << FP) * CUBE_WIDTH)
enum faces { enum faces {
FACE_FRONT = 0, FACE_FRONT = 0,
FACE_LEFT, FACE_LEFT,
FACE_RIGHT, FACE_RIGHT,
FACE_BOTTOM, FACE_BOTTOM,
FACE_TOP, FACE_TOP,
FACE_BACK, FACE_BACK,
NUM_FACES, NUM_FACES,
}; };
#define STEP 20 #define STEP 20
@ -108,7 +103,7 @@ enum faces {
#define ACTION_STEP 0.1 #define ACTION_STEP 0.1
#define ACTION_STEP_FP ((1 << FP) * ACTION_STEP) #define ACTION_STEP_FP ((1 << FP) * ACTION_STEP)
#define SCALE 10 // how much is our initial render scaled #define SCALE 3 // how much is our initial render scaled
volatile FIXED_POINT K1 = 20; volatile FIXED_POINT K1 = 20;
volatile FIXED_POINT K2 = (2 * CUBE_WIDTH) + 10; volatile FIXED_POINT K2 = (2 * CUBE_WIDTH) + 10;
@ -118,22 +113,20 @@ volatile FIXED_POINT K2 = (2 * CUBE_WIDTH) + 10;
#define SQ(n) (n * n) #define SQ(n) (n * n)
#define SQ_FP(n) (MULT_FP(n, n)) #define SQ_FP(n) (MULT_FP(n, n))
#define COORD2INDEX(x, y) (y * VWIDTH + x)
#define COUPLE2INDEX(x) (COORD2INDEX(x[0], x[1]))
#define PLOT_COORD(x, y, c) \ #define PLOT_COORD(x, y, c) \
for (uint8_t i = 0 ; i < SCALE ; ++i) \ for (uint8_t i = 0 ; i < SCALE ; ++i) \
for (uint8_t j = 0 ; j < SCALE ; ++j) \ for (uint8_t j = 0 ; j < SCALE ; ++j) \
putPx(x * SCALE + i, j + (SCALE * y), chooseColor(c)); putPx(x * SCALE + i, j + (SCALE * y), chooseColor(c));
#define GET_ROTATE_X_Q(a) ({ float _a = (a) ; \ #define GET_ROTATE_X_Q(a) ({ float _a = (a) ; \
struct Quaternions q = {}; q.w = FLOAT2FIXED(cos(_a * .5)); \ struct Quaternions q = {}; q.w = FLOAT2FIXED(cos(_a * .5)); \
q.x = FLOAT2FIXED(sin(_a * .5)); q; }) q.x = FLOAT2FIXED(sin(_a * .5)); q; })
#define GET_ROTATE_Y_Q(a) ({ float _a = (a) ; \ #define GET_ROTATE_Y_Q(a) ({ float _a = (a) ; \
struct Quaternions q = {}; q.w = FLOAT2FIXED(cos(_a * .5)); \ struct Quaternions q = {}; q.w = FLOAT2FIXED(cos(_a * .5)); \
q.y = FLOAT2FIXED(sin(_a * .5)); q; }) q.y = FLOAT2FIXED(sin(_a * .5)); q; })
#define GET_ROTATE_Z_Q(a) ({ float _a = (a) ; \ #define GET_ROTATE_Z_Q(a) ({ float _a = (a) ; \
struct Quaternions q = {}; q.w = FLOAT2FIXED(cos(_a * .5)); \ struct Quaternions q = {}; q.w = FLOAT2FIXED(cos(_a * .5)); \
q.z = FLOAT2FIXED(sin(_a * .5)); q; }) q.z = FLOAT2FIXED(sin(_a * .5)); q; })
//TODO Idle animations //TODO Idle animations
#define IS_IDLE (Idle.x || Idle.y || Idle.z) #define IS_IDLE (Idle.x || Idle.y || Idle.z)
@ -152,29 +145,27 @@ init_colors()
RGB15(31, 0, 31), RGB15(31, 0, 31),
}; };
for ( ; lastPaletteIndex <= NUM_FACES ; ++lastPaletteIndex) { for ( ; lastPaletteIndex <= NUM_FACES ; ++lastPaletteIndex)
PALETTE[lastPaletteIndex] = color_order[lastPaletteIndex]; PALETTE[lastPaletteIndex] = color_order[lastPaletteIndex];
}
} }
struct { struct {
uint8_t x; uint8_t x;
uint8_t y; uint8_t y;
uint8_t z; uint8_t z;
} Idle; } Idle;
struct Quaternions { struct Quaternions {
FIXED_POINT w; FIXED_POINT w;
FIXED_POINT x; FIXED_POINT x;
FIXED_POINT y; FIXED_POINT y;
FIXED_POINT z; FIXED_POINT z;
} Target, Current; } Target, Current;
static FIXED_POINT interpolationStep = 0; static FIXED_POINT interpolationStep = 0;
static FIXED_POINT zBuffer[VHEIGHT * VWIDTH]; static volatile uint16_t vertices[NUM_FACES * 2 * 4];
static FIXED_POINT maxZbufByColor[NUM_FACES * 2]; static volatile FIXED_POINT zBuffer[NUM_FACES * 2];
static uint8_t output[VHEIGHT * VWIDTH];
static volatile uint8_t shouldBreak = 1; static volatile uint8_t shouldBreak = 1;
static volatile uint8_t currentlyMoving = 0; static volatile uint8_t currentlyMoving = 0;
@ -184,54 +175,54 @@ static volatile uint8_t frontFacingFace = FACE_FRONT;
void void
normalize(struct Quaternions *q) normalize(struct Quaternions *q)
{ {
float n = sqrt(FIXED2FLOAT(SQ_FP(q->w) + SQ_FP(q->x) + float n = sqrt(FIXED2FLOAT(SQ_FP(q->w) + SQ_FP(q->x) +
SQ_FP(q->y) + SQ_FP(q->z))); SQ_FP(q->y) + SQ_FP(q->z)));
if (n == 0 || n == 1) if (n == 0 || n == 1)
return; return;
q->w = FLOAT2FIXED(FIXED2FLOAT(q->w) / n); q->w = FLOAT2FIXED(FIXED2FLOAT(q->w) / n);
q->x = FLOAT2FIXED(FIXED2FLOAT(q->x) / n); q->x = FLOAT2FIXED(FIXED2FLOAT(q->x) / n);
q->y = FLOAT2FIXED(FIXED2FLOAT(q->y) / n); q->y = FLOAT2FIXED(FIXED2FLOAT(q->y) / n);
q->z = FLOAT2FIXED(FIXED2FLOAT(q->z) / n); q->z = FLOAT2FIXED(FIXED2FLOAT(q->z) / n);
} }
struct Quaternions struct Quaternions
mult(struct Quaternions *q, FIXED_POINT x, FIXED_POINT y, FIXED_POINT z) mult(struct Quaternions *q, FIXED_POINT x, FIXED_POINT y, FIXED_POINT z)
{ {
//p = q * p * qbar //p = q * p * qbar
struct Quaternions res; struct Quaternions res;
res.w = 0; res.w = 0;
res.x = MULT_FP(x, (SQ_FP(q->w) + SQ_FP(q->x) - SQ_FP(q->y) - SQ_FP(q->z))) res.x = MULT_FP(x, (SQ_FP(q->w) + SQ_FP(q->x) - SQ_FP(q->y) - SQ_FP(q->z)))
+ (MULT_FP(y, (MULT_FP(q->x, q->y) - MULT_FP(q->w, q->z))) * 2) + (MULT_FP(y, (MULT_FP(q->x, q->y) - MULT_FP(q->w, q->z))) * 2)
+ (MULT_FP(z, (MULT_FP(q->x, q->z) + MULT_FP(q->w, q->y))) * 2); + (MULT_FP(z, (MULT_FP(q->x, q->z) + MULT_FP(q->w, q->y))) * 2);
res.y = (MULT_FP(x, (MULT_FP(q->x, q->y) + MULT_FP(q->w,q->z))) * 2) res.y = (MULT_FP(x, (MULT_FP(q->x, q->y) + MULT_FP(q->w,q->z))) * 2)
+ (MULT_FP(y, (SQ_FP(q->w) - SQ_FP(q->x) + SQ_FP(q->y) - SQ_FP(q->z)))) + (MULT_FP(y, (SQ_FP(q->w) - SQ_FP(q->x) + SQ_FP(q->y) - SQ_FP(q->z))))
+ (MULT_FP(z, (MULT_FP(q->y, q->z) - MULT_FP(q->w, q->x))) << 2); + (MULT_FP(z, (MULT_FP(q->y, q->z) - MULT_FP(q->w, q->x))) << 2);
res.z = (MULT_FP(x, (MULT_FP(q->x, q->z) - MULT_FP(q->w, q->y)))* 2) res.z = (MULT_FP(x, (MULT_FP(q->x, q->z) - MULT_FP(q->w, q->y)))* 2)
+ (MULT_FP(y, (MULT_FP(q->y, q->z) + MULT_FP(q->w, q->x))) * 2) + (MULT_FP(y, (MULT_FP(q->y, q->z) + MULT_FP(q->w, q->x))) * 2)
+ MULT_FP(z, (SQ_FP(q->w) - SQ_FP(q->x) - SQ_FP(q->y) + SQ_FP(q->z))); + MULT_FP(z, (SQ_FP(q->w) - SQ_FP(q->x) - SQ_FP(q->y) + SQ_FP(q->z)));
return res; return res;
} }
// res in quat p // res in quat p
void void
multQ(struct Quaternions *p, struct Quaternions *q) multQ(struct Quaternions *p, struct Quaternions *q)
{ {
if (p->x <= SHIFT_THRESHOLD_FP && p->x >= -SHIFT_THRESHOLD_FP if (p->x <= SHIFT_THRESHOLD_FP && p->x >= -SHIFT_THRESHOLD_FP
&& p->y <= SHIFT_THRESHOLD_FP && p->y >= -SHIFT_THRESHOLD_FP && p->y <= SHIFT_THRESHOLD_FP && p->y >= -SHIFT_THRESHOLD_FP
&& p->z <= SHIFT_THRESHOLD_FP && p->z >= -SHIFT_THRESHOLD_FP) { && p->z <= SHIFT_THRESHOLD_FP && p->z >= -SHIFT_THRESHOLD_FP) {
p = q; p = q;
return; return;
} }
if (q->x <= SHIFT_THRESHOLD_FP && q->x >= -SHIFT_THRESHOLD_FP if (q->x <= SHIFT_THRESHOLD_FP && q->x >= -SHIFT_THRESHOLD_FP
&& q->y <= SHIFT_THRESHOLD_FP && q->y >= -SHIFT_THRESHOLD_FP && q->y <= SHIFT_THRESHOLD_FP && q->y >= -SHIFT_THRESHOLD_FP
&& q->z <= SHIFT_THRESHOLD_FP && q->z >= -SHIFT_THRESHOLD_FP) && q->z <= SHIFT_THRESHOLD_FP && q->z >= -SHIFT_THRESHOLD_FP)
return; return;
FIXED_POINT w = MULT_FP(p->w, q->w) - MULT_FP(p->x, q->x) - FIXED_POINT w = MULT_FP(p->w, q->w) - MULT_FP(p->x, q->x) -
MULT_FP(p->y, q->y) - MULT_FP(p->z, q->z); MULT_FP(p->y, q->y) - MULT_FP(p->z, q->z);
@ -251,8 +242,8 @@ multQ(struct Quaternions *p, struct Quaternions *q)
uint16_t uint16_t
chooseColor(uint8_t c) chooseColor(uint8_t c)
{ {
if (c >= 1 && c <= NUM_FACES) if (c >= 0 && c < NUM_FACES)
return c; return c + 1; // palette 0 is bg
else else
return 0; return 0;
} }
@ -260,106 +251,108 @@ chooseColor(uint8_t c)
uint8_t uint8_t
chooseMainFace() chooseMainFace()
{ {
int total = 0; int total = 0;
int faces[NUM_FACES] = {0}; int faces[NUM_FACES] = {0};
for (int k = 0; k < VWIDTH * VHEIGHT; ++k) for (int k = 0; k < VWIDTH * VHEIGHT; ++k)
if (output[k] >= 0 && output[k] < NUM_FACES) { if (vertices[k] >= 0 && vertices[k] < NUM_FACES) {
faces[output[k]]++; faces[vertices[k]]++;
++total; ++total;
} }
int max = 0, idx = 0; int max = 0, idx = 0;
for (int k = 0; k < NUM_FACES; ++k) for (int k = 0; k < NUM_FACES; ++k)
if (faces[k] > max) { if (faces[k] > max) {
max = faces[k]; max = faces[k];
idx = k; idx = k;
} }
frontFacingFace = max > total * 0.9 ? idx : -1; frontFacingFace = max > total * 0.9 ? idx : -1;
return frontFacingFace; return frontFacingFace;
} }
// ISSUE the 4 vertices rendered do not make a convex quad
// we have to switch 2 vertices for that
#pragma GCC
uint8_t uint8_t
isInQuad(uint8_t curr[2], uint8_t points[8]) isInQuad(const uint16_t x, const uint16_t y, uint8_t current_face)
{ {
uint8_t pos = 0, neg = 0; uint16_t *points = (uint16_t *)&vertices[current_face * 8];
uint8_t x = curr[0]; // little hack
uint8_t y = curr[1];;
int d;
for (uint8_t i = 0; i < 4; ++i) { uint16_t tmpX = points[6], tmpY = points[7];
if (points[2 * i] == curr[0] && points[2 * i + 1] == curr[1]) points[6] = points[4];
return 1; points[7] = points[5];
points[4] = tmpX;
points[5] = tmpY;
//Form a segment between the i'th point uint8_t pos = 0, neg = 0;
uint8_t x1 = points[2 * i]; int32_t d;
uint8_t y1 = points[2 * i + 1];
//And the i+1'th, or if i is the last, with the first point for (uint8_t i = 0; i < 4; ++i) {
uint8_t i2 = (i + 1) % 4; if (points[2 * i] == x && points[2 * i + 1] == y)
return 1;
uint8_t x2 = points[2 * i2]; //Form a segment between the i'th point
uint8_t y2 = points[2 * i2 + 1]; int32_t x1 = points[2 * i];
int32_t y1 = points[2 * i + 1];
//And the i+1'th, or if i is the last, with the first point
uint8_t i2 = (i + 1) % 4;
int32_t x2 = points[2 * i2];
int32_t y2 = points[2 * i2 + 1];
//Compute the cross product //Compute the cross product
d = (x - x1) * (y2 - y1) - (y - y1) * (x2 - x1); d = (x - x1) * (y2 - y1) - (y - y1) * (x2 - x1);
if (d > 0) ++pos; if (d > 0) ++pos;
if (d < 0) ++neg; if (d < 0) ++neg;
//If the sign changes, then point is outside //If the sign changes, then point is outside
if (pos > 0 && neg > 0) if (pos > 0 && neg > 0)
return 0; return 0;
} }
return 1; return 1;
} }
void void
fill_quads(uint8_t *points, uint8_t current_face) fillQuads(uint8_t current_face)
{ {
uint8_t top = 0, bot = 0, left = 0, right = 0; uint16_t top = UINT16_MAX, bot = 0, left = UINT16_MAX, right = 0;
for (uint8_t x = 0 ; x < 8 ; ++x) { for (uint8_t k = 0 ; k < 8 ; ++k) {
if (x % 2 == 0) { const uint16_t item = vertices[current_face * 8 + k];
if (points[x] > right)
right = points[x]; if (k & 1) {
if (points[x] < left) if (item > bot)
left = points[x]; bot = item;
if (item < top)
top = item;
} else { } else {
if (points[x] > bot) if (item > right)
bot = points[x]; right = item;
if (points[x] < top) if (item < left)
top = points[x]; left = item;
}
}
for (uint16_t y = top ; y <= bot ; ++y) {
for (uint16_t x = left ; x <= right ; ++x) {
if (isInQuad(x, y, current_face))
PLOT_COORD(x, y, current_face);
} }
} }
for (int y = top ; y < bot ; ++y) {
for (int x = left ; x < right ; ++x) {
uint8_t curr[2] = {x, y};
if (isInQuad(curr, points))
PLOT_COORD(x, y, current_face + 1);
}
}
} }
uint8_t uint8_t
detect(uint8_t *points, uint8_t current_face) { detect(uint8_t current_face)
uint8_t i = 0; {
for (uint8_t y = 0; y < VHEIGHT; ++y) { for (uint8_t k = current_face * 8; k < current_face * 8 + 8; ++k)
for (uint8_t x = 0; x < VWIDTH; ++x) { if (vertices[k] == UINT16_MAX)
if (output[COORD2INDEX(x, y)] != current_face)
continue;
// only 4 points are ploted
points[i] = x;
points[i + 1] = y;
i += 2;
}
}
for (uint8_t x = 0 ; x < 8 ; ++x)
if (points[x] == 0)
return 0; return 0;
return 1; return 1;
} }
@ -372,222 +365,211 @@ comp(const void *p1, const void *p2) {
} }
void void
detect_and_fill_quads() detectAndFillQuads()
{ {
qsort(maxZbufByColor, NUM_FACES, 2 * sizeof(FIXED_POINT), comp); qsort((FIXED_POINT *)zBuffer, NUM_FACES, 2 * sizeof(FIXED_POINT), comp);
for (uint8_t idx = 0 ; idx < NUM_FACES ; ++idx) { for (uint8_t idx = 0 ; idx < NUM_FACES ; ++idx) {
uint8_t current_face = maxZbufByColor[2 * idx + 1]; char ch = zBuffer[2 * idx + 1];
uint8_t points[8] = { 0 }; if (detect(ch))
if (detect(points, current_face)) fillQuads(ch);
fill_quads(points, current_face); }
}
} }
void void
printAscii() printAscii()
{ {
detect_and_fill_quads(); detectAndFillQuads();
flipBuffers(); flipBuffers();
// DISPLAY POINTS
//for (int i = 0; i < VHEIGHT; ++i) {
// for (int j = 0; j < VWIDTH; ++j) {
// uint8_t prevc = 0;
// uint8_t c = output[i * VWIDTH + j];
// MEM_VRAM_MODE4[i * GBA_SCREEN_W + j] = chooseColor(c);
// }
//}
} }
void void
rotateCube(FIXED_POINT cubeX, FIXED_POINT cubeY, FIXED_POINT cubeZ, uint8_t ch) rotateCube(FIXED_POINT cubeX, FIXED_POINT cubeY, FIXED_POINT cubeZ, uint8_t ch)
{ {
struct Quaternions q = mult(&Current, cubeX, cubeY, cubeZ); struct Quaternions q = mult(&Current, cubeX, cubeY, cubeZ);
int x = q.x >> FP; uint32_t x = q.x >> FP;
int y = q.y >> FP; uint32_t y = q.y >> FP;
// not fixed point yet!! // not fixed point yet!!
float invZ = (1 << FP) / (float)(q.z + K2 * (1 << FP)); float invZ = (1 << FP) / (float)(q.z + K2 * (1 << FP));
int screenX = (int)(VWIDTH * 0.5) + (int)((x) * K1) * invZ; int32_t screenX = CUBE_WIDTH * 2 + (int32_t)((x) * K1) * invZ;
int screenY = (int)(VHEIGHT * 0.5) + (int)((y) * K1) * invZ; int32_t screenY = CUBE_WIDTH * 2 + (int32_t)((y) * K1) * invZ;
//TODO luminescence //TODO luminescence
if (screenX > VWIDTH || screenX < 0) return; if (screenX > GBA_SCREEN_W || screenX < 0
|| screenY > GBA_SCREEN_H || screenY < 0) return;
int idx = screenY * VWIDTH + screenX; FIXED_POINT invZFixed = FLOAT2FIXED(invZ);
if (idx >= 0 && idx < VWIDTH * VHEIGHT) { uint8_t firstEmptyVertex = ch * 8;
invZ = FLOAT2FIXED(invZ); for ( ; vertices[firstEmptyVertex] != UINT16_MAX
if (zBuffer[idx] < invZ) { && firstEmptyVertex - ch * 8 < 8 ; firstEmptyVertex+=2);
zBuffer[idx] = invZ;
output[idx] = ch; vertices[firstEmptyVertex] = screenX;
if (invZ > maxZbufByColor[ch]) { vertices[firstEmptyVertex + 1] = screenY;
maxZbufByColor[2 * ch] = invZ;
maxZbufByColor[2 * ch + 1] = ch; //palette[0] is bg if (zBuffer[2 * ch] < invZFixed) {
} zBuffer[2 * ch] = invZFixed;
} zBuffer[2 * ch + 1] = ch;
} }
} }
void void
interpolate(struct Quaternions *qa, struct Quaternions *qb) interpolate(struct Quaternions *qa, struct Quaternions *qb)
{ {
frontFacingFace = -1; frontFacingFace = -1;
float cosHalfTheta = float cosHalfTheta =
FIXED2FLOAT(MULT_FP(qa->w, qb->w) + FIXED2FLOAT(MULT_FP(qa->w, qb->w) +
MULT_FP(qa->x, qb->x) + MULT_FP(qa->x, qb->x) +
MULT_FP(qa->y, qb->y) + MULT_FP(qa->y, qb->y) +
MULT_FP(qa->z, qb->z)); MULT_FP(qa->z, qb->z));
//if qa = qb or qa = -qb then theta = 0 and we can return qa //if qa = qb or qa = -qb then theta = 0 and we can return qa
if (cosHalfTheta >= 1.0 || cosHalfTheta <= -1.0) { if (cosHalfTheta >= 1.0 || cosHalfTheta <= -1.0) {
goto exit; goto exit;
} }
if (cosHalfTheta < 0) { if (cosHalfTheta < 0) {
qb->w = -qb->w; qb->w = -qb->w;
qb->x = -qb->x; qb->x = -qb->x;
qb->y = -qb->y; qb->y = -qb->y;
qb->z = qb->z; qb->z = qb->z;
cosHalfTheta = -cosHalfTheta; cosHalfTheta = -cosHalfTheta;
} }
float halfTheta = acos(cosHalfTheta); float halfTheta = acos(cosHalfTheta);
float sinHalfTheta = sqrt(1.0 - cosHalfTheta * cosHalfTheta); float sinHalfTheta = sqrt(1.0 - cosHalfTheta * cosHalfTheta);
//if theta = 180 degrees then result is not fully defined //if theta = 180 degrees then result is not fully defined
// we could rotate around any axis normal to qa or qb // we could rotate around any axis normal to qa or qb
if (sinHalfTheta < 0.01 && sinHalfTheta > -0.01) { if (sinHalfTheta < 0.01 && sinHalfTheta > -0.01) {
qa->w = ((qa->w >> 1) + (qb->w >> 1)); qa->w = ((qa->w >> 1) + (qb->w >> 1));
qa->x = ((qa->x >> 1) + (qb->x >> 1)); qa->x = ((qa->x >> 1) + (qb->x >> 1));
qa->y = ((qa->y >> 1) + (qb->y >> 1)); qa->y = ((qa->y >> 1) + (qb->y >> 1));
qa->z = ((qa->z >> 1) + (qb->z >> 1)); qa->z = ((qa->z >> 1) + (qb->z >> 1));
goto exit; goto exit;
} }
FIXED_POINT ratioA = FLOAT2FIXED(sin((1 - FIXED2FLOAT(interpolationStep)) * halfTheta) / sinHalfTheta); FIXED_POINT ratioA = FLOAT2FIXED(sin((1 - FIXED2FLOAT(interpolationStep)) * halfTheta) / sinHalfTheta);
FIXED_POINT ratioB = FLOAT2FIXED(sin(FIXED2FLOAT(interpolationStep) * halfTheta) / sinHalfTheta); FIXED_POINT ratioB = FLOAT2FIXED(sin(FIXED2FLOAT(interpolationStep) * halfTheta) / sinHalfTheta);
qa->w = (MULT_FP(qa->w, ratioA) + MULT_FP(qb->w, ratioB)); qa->w = (MULT_FP(qa->w, ratioA) + MULT_FP(qb->w, ratioB));
qa->x = (MULT_FP(qa->x, ratioA) + MULT_FP(qb->x, ratioB)); qa->x = (MULT_FP(qa->x, ratioA) + MULT_FP(qb->x, ratioB));
qa->y = (MULT_FP(qa->y, ratioA) + MULT_FP(qb->y, ratioB)); qa->y = (MULT_FP(qa->y, ratioA) + MULT_FP(qb->y, ratioB));
qa->z = (MULT_FP(qa->z, ratioA) + MULT_FP(qb->z, ratioB)); qa->z = (MULT_FP(qa->z, ratioA) + MULT_FP(qb->z, ratioB));
exit: exit:
interpolationStep += ACTION_STEP_FP; interpolationStep += ACTION_STEP_FP;
} }
void void
handleAngle(uint8_t input) handleAngle(uint8_t input)
{ {
// TODO // TODO
if (currentlyMoving == 0) { if (currentlyMoving == 0) {
currentlyMoving = input; currentlyMoving = input;
struct Quaternions tmp; struct Quaternions tmp;
switch (input) { switch (input) {
case 'w': case 'w':
case 'W': case 'W':
tmp = GET_ROTATE_X_Q(M_PI_2); tmp = GET_ROTATE_X_Q(M_PI_2);
break; break;
case 'a': case 'a':
case 'A': case 'A':
tmp = GET_ROTATE_Y_Q(-M_PI_2); tmp = GET_ROTATE_Y_Q(-M_PI_2);
break; break;
case 's': case 's':
case 'S': case 'S':
tmp = GET_ROTATE_X_Q(-M_PI_2); tmp = GET_ROTATE_X_Q(-M_PI_2);
break; break;
case 'd': case 'd':
case 'D': case 'D':
tmp = GET_ROTATE_Y_Q(M_PI_2); tmp = GET_ROTATE_Y_Q(M_PI_2);
break; break;
case 'q': case 'q':
case 'Q': case 'Q':
tmp = GET_ROTATE_Z_Q(-M_PI_2); tmp = GET_ROTATE_Z_Q(-M_PI_2);
break; break;
case 'e': case 'e':
case 'E': case 'E':
tmp = GET_ROTATE_Z_Q(M_PI_2); tmp = GET_ROTATE_Z_Q(M_PI_2);
break; break;
default: default:
currentlyMoving = 0; currentlyMoving = 0;
return; return;
//TODO idle movement //TODO idle movement
} }
multQ(&tmp, &Target); multQ(&tmp, &Target);
Target = tmp; Target = tmp;
normalize(&Target); normalize(&Target);
} else { } else {
if (interpolationStep < (1 << FP) ) { if (interpolationStep < (1 << FP) ) {
interpolate(&Current, &Target); interpolate(&Current, &Target);
normalize(&Current); normalize(&Current);
} }
else { else {
Current = Target; Current = Target;
interpolationStep = 0; interpolationStep = 0;
currentlyMoving = 0; currentlyMoving = 0;
} }
} }
} }
uint8_t uint8_t
getInput() getInput()
{ {
// TODO // TODO
uint8_t c = 'd'; uint8_t c = 'd';
handleAngle(c); handleAngle(c);
return c; return c;
} }
int int
main() main()
{ {
REG_DISPCNT = DISPCNT_BG_MODE(4) | DISPCNT_BG2_ENABLE; REG_DISPCNT = DISPCNT_BG_MODE(4) | DISPCNT_BG2_ENABLE;
Current = GET_ROTATE_Z_Q(0);
Current = GET_ROTATE_Z_Q(0);
init_colors(); init_colors();
while (1) { while (1) {
memset(MEM_VRAM_MODE4, 0, GBA_SCREEN_H * GBA_SCREEN_W); memset(MEM_VRAM_MODE4, 0, GBA_SCREEN_H * GBA_SCREEN_W);
memset(output, NUM_FACES, VWIDTH * VHEIGHT); memset((uint16_t *)vertices, UINT16_MAX, sizeof(uint16_t) * NUM_FACES * 4 * 2);
memset(maxZbufByColor, 0, 2 * sizeof(FIXED_POINT) * NUM_FACES); //zBuff is not correct data struct, need a map or smth
memset(zBuffer, 0xffffffff, VWIDTH * VHEIGHT * sizeof(FIXED_POINT)); memset((uint16_t *)zBuffer, 0, NUM_FACES * 2 * sizeof(FIXED_POINT));
for (FIXED_POINT cubeX = -CUBE_WIDTH_FP + 2 * (1 << FP); for (FIXED_POINT cubeX = -CUBE_WIDTH_FP + 1 * (1 << FP);
cubeX <= CUBE_WIDTH_FP - 2 * (1 << FP); cubeX += STEP_FP - 4 * (1 << FP)) { cubeX <= CUBE_WIDTH_FP - 1 * (1 << FP); cubeX += STEP_FP - 2 * (1 << FP)) {
for (FIXED_POINT cubeY = -CUBE_WIDTH_FP + 2 * (1 << FP); for (FIXED_POINT cubeY = -CUBE_WIDTH_FP + 1 * (1 << FP);
cubeY <= CUBE_WIDTH_FP - 2 * (1 << FP); cubeY += STEP_FP - 4 * (1 << FP)) { cubeY <= CUBE_WIDTH_FP - 1 * (1 << FP); cubeY += STEP_FP - 2 * (1 << FP)) {
switch (frontFacingFace) { switch (frontFacingFace) {
case FACE_FRONT: case FACE_FRONT:
rotateCube(cubeX, cubeY, -CUBE_WIDTH_FP, FACE_FRONT); rotateCube(cubeX, cubeY, -CUBE_WIDTH_FP, FACE_FRONT);
break; break;
case FACE_LEFT: case FACE_LEFT:
rotateCube(-CUBE_WIDTH_FP, cubeX, cubeY, FACE_LEFT); rotateCube(-CUBE_WIDTH_FP, cubeX, cubeY, FACE_LEFT);
break; break;
case FACE_RIGHT: case FACE_RIGHT:
rotateCube(CUBE_WIDTH_FP, cubeX, cubeY, FACE_RIGHT); rotateCube(CUBE_WIDTH_FP, cubeX, cubeY, FACE_RIGHT);
break; break;
case FACE_BOTTOM: case FACE_BOTTOM:
rotateCube(cubeX, -CUBE_WIDTH_FP, cubeY, FACE_BOTTOM); rotateCube(cubeX, -CUBE_WIDTH_FP, cubeY, FACE_BOTTOM);
break; break;
case FACE_TOP: case FACE_TOP:
rotateCube(cubeX, CUBE_WIDTH_FP, cubeY, FACE_TOP); rotateCube(cubeX, CUBE_WIDTH_FP, cubeY, FACE_TOP);
break; break;
case FACE_BACK: case FACE_BACK:
rotateCube(cubeX, cubeY, CUBE_WIDTH_FP, FACE_BACK); rotateCube(cubeX, cubeY, CUBE_WIDTH_FP, FACE_BACK);
break; break;
default: // idk render all default: // idk render all
rotateCube(cubeX, cubeY, -CUBE_WIDTH_FP, FACE_FRONT); rotateCube(cubeX, cubeY, -CUBE_WIDTH_FP, FACE_FRONT);
rotateCube(-CUBE_WIDTH_FP, cubeX, cubeY, FACE_LEFT); rotateCube(-CUBE_WIDTH_FP, cubeX, cubeY, FACE_LEFT);
rotateCube(CUBE_WIDTH_FP, cubeX, cubeY, FACE_RIGHT); rotateCube(CUBE_WIDTH_FP, cubeX, cubeY, FACE_RIGHT);
rotateCube(cubeX, -CUBE_WIDTH_FP, cubeY, FACE_TOP); rotateCube(cubeX, -CUBE_WIDTH_FP, cubeY, FACE_TOP);
rotateCube(cubeX, CUBE_WIDTH_FP, cubeY, FACE_BOTTOM); rotateCube(cubeX, CUBE_WIDTH_FP, cubeY, FACE_BOTTOM);
rotateCube(cubeX, cubeY, CUBE_WIDTH_FP, FACE_BACK); rotateCube(cubeX, cubeY, CUBE_WIDTH_FP, FACE_BACK);
} }
} }
} }
printAscii(); printAscii();
getInput(); getInput();
} }
} }