diff --git a/gbafix/Makefile b/gbafix/Makefile index c6bbdf8..9668bee 100644 --- a/gbafix/Makefile +++ b/gbafix/Makefile @@ -4,7 +4,7 @@ NAME := gbafix -CC := gcc +# CC := gcc RM := rm -rf # `make V=` builds the binary in verbose build mode diff --git a/source/main.c b/source/main.c index 5198290..75f71d7 100644 --- a/source/main.c +++ b/source/main.c @@ -3,6 +3,7 @@ // SPDX-FileContributor: Antonio Niño Díaz, 2022 #include +#include #define GBA_SCREEN_W 240 #define GBA_SCREEN_H 160 @@ -29,15 +30,24 @@ #define DISPCNT_BG2_ENABLE (1 << 10) -#define MEM_VRAM_MODE3_FB ((uint16_t *)0x06000000) +#define MEM_VRAM_MODE4 ((uint8_t *)buffer) + +#define SHOW_BACK 0x10; +#define FRONT_BUFFER (0x6000000) +#define BACK_BUFFER (0x600A000) + +#define PALETTE ((uint16_t *)0x5000000) +static volatile uint8_t lastPaletteIndex = 0; #define FIXED_POINT int32_t -#define fp 12 +#define FP 12 #define SHIFT_THRESHOLD 0.05 -#define SHIFT_THRESHOLD_FP ((1 << fp) * SHIFT_THRESHOLD) +#define SHIFT_THRESHOLD_FP ((1 << FP) * SHIFT_THRESHOLD) -#define FLOAT2FIXED(value) (int)((value) * (1 << fp)) -#define FIXED2FLOAT(value) ((value) / (float)(1 << fp)) +#define FLOAT2FIXED(value) (int)((value) * (1 << FP)) +#define FIXED2FLOAT(value) ((value) / (float)(1 << FP)) + +static uint8_t *buffer = (uint8_t *)FRONT_BUFFER; static inline uint16_t RGB15(uint16_t r, uint16_t g, uint16_t b) @@ -45,6 +55,30 @@ RGB15(uint16_t r, uint16_t g, uint16_t b) return (r & 0x1F) | ((g & 0x1F) << 5) | ((b & 0x1F) << 10); } +void +flipBuffers() +{ + if(buffer == (uint8_t *)FRONT_BUFFER) { + REG_DISPCNT &= ~SHOW_BACK; + buffer = (uint8_t *)BACK_BUFFER; + } else { + REG_DISPCNT |= SHOW_BACK; + buffer = (uint8_t *)FRONT_BUFFER; + } +} + +void +putPx(uint8_t x, uint8_t y, uint16_t c) +{ + uint16_t pos = (GBA_SCREEN_W * y + x) >> 1; + uint8_t px = buffer[pos]; + if (y & 1) { + buffer[pos] = c << 8; + buffer[pos] = (c << 8) | (px & 0x00ff); + } else { + buffer[pos] = (px & 0xff00) | c; + } +} /////////////////////////////////////////////////////////// #include @@ -53,10 +87,10 @@ RGB15(uint16_t r, uint16_t g, uint16_t b) #include #include -#define VWIDTH 50 -#define VHEIGHT 50 +#define VWIDTH 25 +#define VHEIGHT 25 #define CUBE_WIDTH 10 -#define CUBE_WIDTH_FP ((1 << fp) * CUBE_WIDTH) +#define CUBE_WIDTH_FP ((1 << FP) * CUBE_WIDTH) enum faces { FACE_FRONT = 0, @@ -68,27 +102,28 @@ enum faces { NUM_FACES, }; -#define STEP 5 -#define STEP_FP ((1 << fp) * STEP) +#define STEP 20 +#define STEP_FP ((1 << FP) * STEP) #define ACTION_STEP 0.1 -#define ACTION_STEP_FP ((1 << fp) * ACTION_STEP) +#define ACTION_STEP_FP ((1 << FP) * ACTION_STEP) -#define PITCH_STEP 0.05 -#define ROLL_STEP 0.05 -#define YAW_STEP 0.05 +#define SCALE 10 // how much is our initial render scaled -volatile FIXED_POINT K1 = 60; -volatile FIXED_POINT K2 = (2 * CUBE_WIDTH) + 20; +volatile FIXED_POINT K1 = 20; +volatile FIXED_POINT K2 = (2 * CUBE_WIDTH) + 10; - -#define MULT_FP(a,b) ((a * b) >> fp) +#define MULT_FP(a,b) ((a * b) >> FP) #define SQ(n) (n * n) #define SQ_FP(n) (MULT_FP(n, n)) #define COORD2INDEX(x, y) (y * VWIDTH + x) #define COUPLE2INDEX(x) (COORD2INDEX(x[0], x[1])) +#define PLOT_COORD(x, y, c) \ + for (uint8_t i = 0 ; i < SCALE ; ++i) \ + for (uint8_t j = 0 ; j < SCALE ; ++j) \ + putPx(x * SCALE + i, j + (SCALE * y), chooseColor(c)); #define GET_ROTATE_X_Q(a) ({ float _a = (a) ; \ struct Quaternions q = {}; q.w = FLOAT2FIXED(cos(_a * .5)); \ @@ -104,10 +139,28 @@ volatile FIXED_POINT K2 = (2 * CUBE_WIDTH) + 20; #define IS_IDLE (Idle.x || Idle.y || Idle.z) #define RESET_IDLE {Idle.x = 0; Idle.y = 0; Idle.z = 0;} +void +init_colors() +{ + const uint16_t color_order[NUM_FACES + 1] = { + RGB15(0, 0, 0), + RGB15(31, 0, 0), + RGB15(0, 31, 0), + RGB15(0, 0, 31), + RGB15(0, 31, 31), + RGB15(31, 31, 0), + RGB15(31, 0, 31), + }; + + for ( ; lastPaletteIndex <= NUM_FACES ; ++lastPaletteIndex) { + PALETTE[lastPaletteIndex] = color_order[lastPaletteIndex]; + } +} + struct { - char x; - char y; - char z; + uint8_t x; + uint8_t y; + uint8_t z; } Idle; @@ -118,22 +171,24 @@ struct Quaternions { FIXED_POINT z; } Target, Current; -FIXED_POINT interpolationStep = 0; -FIXED_POINT zBuffer[VHEIGHT * VWIDTH]; -char output[VHEIGHT * VWIDTH]; +static FIXED_POINT interpolationStep = 0; +static FIXED_POINT zBuffer[VHEIGHT * VWIDTH]; +static FIXED_POINT maxZbufByColor[NUM_FACES * 2]; +static uint8_t output[VHEIGHT * VWIDTH]; -static volatile char shouldBreak = 1; -static volatile char currentlyMoving = 0; -static volatile char currentCountR = 0; -static volatile char frontFacingFace = FACE_FRONT; +static volatile uint8_t shouldBreak = 1; +static volatile uint8_t currentlyMoving = 0; +static volatile uint8_t currentCountR = 0; +static volatile uint8_t frontFacingFace = FACE_FRONT; void normalize(struct Quaternions *q) { float n = sqrt(FIXED2FLOAT(SQ_FP(q->w) + SQ_FP(q->x) + SQ_FP(q->y) + SQ_FP(q->z))); - if (n == 0) + if (n == 0 || n == 1) return; + q->w = FLOAT2FIXED(FIXED2FLOAT(q->w) / n); q->x = FLOAT2FIXED(FIXED2FLOAT(q->x) / n); q->y = FLOAT2FIXED(FIXED2FLOAT(q->y) / n); @@ -141,77 +196,68 @@ normalize(struct Quaternions *q) } struct Quaternions -mult(struct Quaternions q, FIXED_POINT x, FIXED_POINT y, FIXED_POINT z) +mult(struct Quaternions *q, FIXED_POINT x, FIXED_POINT y, FIXED_POINT z) { //p = q * p * qbar struct Quaternions res; res.w = 0; - res.x = MULT_FP(x, (SQ_FP(q.w) + SQ_FP(q.x) - SQ_FP(q.y) - SQ_FP(q.z))) - + (MULT_FP(y, (MULT_FP(q.x, q.y) - MULT_FP(q.w, q.z))) * 2) - + (MULT_FP(z, (MULT_FP(q.x, q.z) + MULT_FP(q.w, q.y))) * 2); + res.x = MULT_FP(x, (SQ_FP(q->w) + SQ_FP(q->x) - SQ_FP(q->y) - SQ_FP(q->z))) + + (MULT_FP(y, (MULT_FP(q->x, q->y) - MULT_FP(q->w, q->z))) * 2) + + (MULT_FP(z, (MULT_FP(q->x, q->z) + MULT_FP(q->w, q->y))) * 2); - res.y = (MULT_FP(x, (MULT_FP(q.x, q.y) + MULT_FP(q.w,q.z))) * 2) - + (MULT_FP(y, (SQ_FP(q.w) - SQ_FP(q.x) + SQ_FP(q.y) - SQ_FP(q.z)))) - + (MULT_FP(z, (MULT_FP(q.y, q.z) - MULT_FP(q.w, q.x))) << 2); + res.y = (MULT_FP(x, (MULT_FP(q->x, q->y) + MULT_FP(q->w,q->z))) * 2) + + (MULT_FP(y, (SQ_FP(q->w) - SQ_FP(q->x) + SQ_FP(q->y) - SQ_FP(q->z)))) + + (MULT_FP(z, (MULT_FP(q->y, q->z) - MULT_FP(q->w, q->x))) << 2); - res.z = (MULT_FP(x, (MULT_FP(q.x, q.z) - MULT_FP(q.w, q.y)))* 2) - + (MULT_FP(y, (MULT_FP(q.y, q.z) + MULT_FP(q.w, q.x))) * 2) - + MULT_FP(z, (SQ_FP(q.w) - SQ_FP(q.x) - SQ_FP(q.y) + SQ_FP(q.z))); + res.z = (MULT_FP(x, (MULT_FP(q->x, q->z) - MULT_FP(q->w, q->y)))* 2) + + (MULT_FP(y, (MULT_FP(q->y, q->z) + MULT_FP(q->w, q->x))) * 2) + + MULT_FP(z, (SQ_FP(q->w) - SQ_FP(q->x) - SQ_FP(q->y) + SQ_FP(q->z))); return res; } -struct Quaternions -multQ(struct Quaternions p, struct Quaternions q) +// res in quat p +void +multQ(struct Quaternions *p, struct Quaternions *q) { - if (p.x <= SHIFT_THRESHOLD_FP && p.x >= -SHIFT_THRESHOLD_FP - && p.y <= SHIFT_THRESHOLD_FP && p.y >= -SHIFT_THRESHOLD_FP - && p.z <= SHIFT_THRESHOLD_FP && p.z >= -SHIFT_THRESHOLD_FP) - return q; + if (p->x <= SHIFT_THRESHOLD_FP && p->x >= -SHIFT_THRESHOLD_FP + && p->y <= SHIFT_THRESHOLD_FP && p->y >= -SHIFT_THRESHOLD_FP + && p->z <= SHIFT_THRESHOLD_FP && p->z >= -SHIFT_THRESHOLD_FP) { + p = q; + return; + } - if (q.x <= SHIFT_THRESHOLD_FP && q.x >= -SHIFT_THRESHOLD_FP - && q.y <= SHIFT_THRESHOLD_FP && q.y >= -SHIFT_THRESHOLD_FP - && q.z <= SHIFT_THRESHOLD_FP && q.z >= -SHIFT_THRESHOLD_FP) - return p; + if (q->x <= SHIFT_THRESHOLD_FP && q->x >= -SHIFT_THRESHOLD_FP + && q->y <= SHIFT_THRESHOLD_FP && q->y >= -SHIFT_THRESHOLD_FP + && q->z <= SHIFT_THRESHOLD_FP && q->z >= -SHIFT_THRESHOLD_FP) + return; - struct Quaternions res = { - .w = MULT_FP(p.w, q.w) - MULT_FP(p.x, q.x) - - MULT_FP(p.y, q.y) - MULT_FP(p.z, q.z), - .x = MULT_FP(p.w, q.x) + MULT_FP(p.x, q.w) + - MULT_FP(p.y, q.z) - MULT_FP(p.z, q.y), - .y = MULT_FP(p.w, q.y) - MULT_FP(p.x, q.z) + - MULT_FP(p.y, q.w) + MULT_FP(p.z, q.x), - .z = MULT_FP(p.w, q.z) + MULT_FP(p.x, q.y) - - MULT_FP(p.y, q.x) + MULT_FP(p.z, q.w), - }; - - return res; + FIXED_POINT w = MULT_FP(p->w, q->w) - MULT_FP(p->x, q->x) - + MULT_FP(p->y, q->y) - MULT_FP(p->z, q->z); + FIXED_POINT x = MULT_FP(p->w, q->x) + MULT_FP(p->x, q->w) + + MULT_FP(p->y, q->z) - MULT_FP(p->z, q->y); + FIXED_POINT y = MULT_FP(p->w, q->y) - MULT_FP(p->x, q->z) + + MULT_FP(p->y, q->w) + MULT_FP(p->z, q->x); + FIXED_POINT z = MULT_FP(p->w, q->z) + MULT_FP(p->x, q->y) - + MULT_FP(p->y, q->x) + MULT_FP(p->z, q->w); + p->w = w; + p->x = x; + p->y = y; + p->z = z; } + uint16_t -chooseColor(char c) +chooseColor(uint8_t c) { - switch (c) { - case FACE_FRONT: - return RGB15(31, 0, 0); - case FACE_BACK: - return RGB15(31, 15, 31); - case FACE_BOTTOM: - return RGB15(31, 0, 31); - case FACE_LEFT: - return RGB15(0, 0, 31); - case FACE_RIGHT: - return RGB15(0, 31, 31); - case FACE_TOP: - return RGB15(0, 31, 0); - default: - // BG - return RGB15(31, 31, 31); - } + if (c >= 1 && c <= NUM_FACES) + return c; + else + return 0; } -char +uint8_t chooseMainFace() { int total = 0; @@ -234,30 +280,27 @@ chooseMainFace() return frontFacingFace; } -char -isInQuad(char curr[2], char top[2], char left[2], - char right[2], char bot[2]) +uint8_t +isInQuad(uint8_t curr[2], uint8_t points[8]) { - char *points[4] = {top, left, bot, right}; - - char pos = 0, neg = 0; - char x = curr[0]; - char y = curr[1];; + uint8_t pos = 0, neg = 0; + uint8_t x = curr[0]; + uint8_t y = curr[1];; int d; - for (char i = 0; i < 4; ++i) { - if (points[i][0] == curr[0] && points[i][1] == curr[1]) + for (uint8_t i = 0; i < 4; ++i) { + if (points[2 * i] == curr[0] && points[2 * i + 1] == curr[1]) return 1; //Form a segment between the i'th point - char x1 = points[i][0]; - char y1 = points[i][1]; + uint8_t x1 = points[2 * i]; + uint8_t y1 = points[2 * i + 1]; //And the i+1'th, or if i is the last, with the first point - char i2 = (i + 1) % 4; + uint8_t i2 = (i + 1) % 4; - char x2 = points[i2][0]; - char y2 = points[i2][1]; + uint8_t x2 = points[2 * i2]; + uint8_t y2 = points[2 * i2 + 1]; //Compute the cross product @@ -275,90 +318,97 @@ isInQuad(char curr[2], char top[2], char left[2], } void -fill_quads(char current_face, char top[2], char left[2], - char right[2], char bot[2]) +fill_quads(uint8_t *points, uint8_t current_face) { - for (int y = top[1] ; y < bot[1] ; ++y) { - for (int x = left[0] ; x < right[0] ; ++x) { - char curr[2] = {x, y}; - if (isInQuad(curr, top, left, right, bot)) - //zbuffer issue - output[COORD2INDEX(x, y)] = current_face; + uint8_t top = 0, bot = 0, left = 0, right = 0; + for (uint8_t x = 0 ; x < 8 ; ++x) { + if (x % 2 == 0) { + if (points[x] > right) + right = points[x]; + if (points[x] < left) + left = points[x]; + } else { + if (points[x] > bot) + bot = points[x]; + if (points[x] < top) + top = points[x]; + } + } + for (int y = top ; y < bot ; ++y) { + for (int x = left ; x < right ; ++x) { + uint8_t curr[2] = {x, y}; + if (isInQuad(curr, points)) + PLOT_COORD(x, y, current_face + 1); } } } -float -dist(char a[2], char b[2]) { - return (a[0] - b[0]) * (a[0] - b[0]) + (a[1] - b[1]) * (a[1] - b[1]); +uint8_t +detect(uint8_t *points, uint8_t current_face) { + uint8_t i = 0; + for (uint8_t y = 0; y < VHEIGHT; ++y) { + for (uint8_t x = 0; x < VWIDTH; ++x) { + if (output[COORD2INDEX(x, y)] != current_face) + continue; + // only 4 points are ploted + points[i] = x; + points[i + 1] = y; + i += 2; + } + } + + for (uint8_t x = 0 ; x < 8 ; ++x) + if (points[x] == 0) + return 0; + return 1; } +int +comp(const void *p1, const void *p2) { + FIXED_POINT left = *(const FIXED_POINT *)p1; + FIXED_POINT right = *(const FIXED_POINT *)p2; + + return ((left > right) - (left < right)); +} void detect_and_fill_quads() { - for (int current_face = 0 ; current_face < NUM_FACES ; ++current_face) { - char top [2] = {VWIDTH, VHEIGHT}; - char left[2] = {VWIDTH, 0}; - char right [2] = {0, 0}; - char bot[2] = {0, 0}; - for (char y = 0; y < VHEIGHT; ++y) { - for (char x = 0; x < VWIDTH; ++x) { - if (output[COORD2INDEX(x, y)] != current_face) - continue; - if (y < top[1]) { - top[0] = x; - top[1] = y; - } - if (x > right[0] && (x != top[0] || y != top [1])) { - right[0] = x; - right[1] = y; - } - if (x <= left[0] && (x != top[0] || y != top [1])) { // <= to force it bot - left[0] = x; - left[1] = y; - } - if (y >= bot[1] && (x != right[0] || y != right [1]) && (x != left[0] || y != left[1])) { - bot[0] = x; - bot[1] = y; - } - } - } - fill_quads(current_face, top, left, right, bot); + qsort(maxZbufByColor, NUM_FACES, 2 * sizeof(FIXED_POINT), comp); + for (uint8_t idx = 0 ; idx < NUM_FACES ; ++idx) { + uint8_t current_face = maxZbufByColor[2 * idx + 1]; + uint8_t points[8] = { 0 }; + if (detect(points, current_face)) + fill_quads(points, current_face); } - } void printAscii() { - // TODO scale up - MEM_VRAM_MODE3_FB[120 + 80 * GBA_SCREEN_W] = RGB15(currentCountR, 31 - currentCountR, 0); - MEM_VRAM_MODE3_FB[136 + 80 * GBA_SCREEN_W] = RGB15(currentCountR, 31 - currentCountR, 0); - MEM_VRAM_MODE3_FB[120 + 96 * GBA_SCREEN_W] = RGB15(currentCountR, 31 - currentCountR, 0); - currentCountR = currentCountR == 31 ? 0 : 31; - detect_and_fill_quads(); + flipBuffers(); - for (int i = 0; i < VHEIGHT; ++i) { - for (int j = 0; j < VWIDTH; ++j) { - char prevc = 0; - char *c = output + (i * VWIDTH + j); - MEM_VRAM_MODE3_FB[(i + 50) * GBA_SCREEN_W + j + 50] = chooseColor(*c); - } - } + // DISPLAY POINTS + //for (int i = 0; i < VHEIGHT; ++i) { + // for (int j = 0; j < VWIDTH; ++j) { + // uint8_t prevc = 0; + // uint8_t c = output[i * VWIDTH + j]; + // MEM_VRAM_MODE4[i * GBA_SCREEN_W + j] = chooseColor(c); + // } + //} } void -rotateCube(FIXED_POINT cubeX, FIXED_POINT cubeY, FIXED_POINT cubeZ, char ch) +rotateCube(FIXED_POINT cubeX, FIXED_POINT cubeY, FIXED_POINT cubeZ, uint8_t ch) { - struct Quaternions q = mult(Current, cubeX, cubeY, cubeZ); + struct Quaternions q = mult(&Current, cubeX, cubeY, cubeZ); - int x = q.x >> fp; - int y = q.y >> fp; + int x = q.x >> FP; + int y = q.y >> FP; // not fixed point yet!! - float invZ = (1 << fp) / (float)(q.z + K2 * (1 << fp)); + float invZ = (1 << FP) / (float)(q.z + K2 * (1 << FP)); int screenX = (int)(VWIDTH * 0.5) + (int)((x) * K1) * invZ; int screenY = (int)(VHEIGHT * 0.5) + (int)((y) * K1) * invZ; @@ -372,33 +422,32 @@ rotateCube(FIXED_POINT cubeX, FIXED_POINT cubeY, FIXED_POINT cubeZ, char ch) if (zBuffer[idx] < invZ) { zBuffer[idx] = invZ; output[idx] = ch; + if (invZ > maxZbufByColor[ch]) { + maxZbufByColor[2 * ch] = invZ; + maxZbufByColor[2 * ch + 1] = ch; //palette[0] is bg + } } } } -struct Quaternions -interpolate(struct Quaternions qa, struct Quaternions qb) +void +interpolate(struct Quaternions *qa, struct Quaternions *qb) { frontFacingFace = -1; - struct Quaternions res; float cosHalfTheta = - FIXED2FLOAT(MULT_FP(qa.w, qb.w) + - MULT_FP(qa.x, qb.x) + - MULT_FP(qa.y, qb.y) + - MULT_FP(qa.z, qb.z)); + FIXED2FLOAT(MULT_FP(qa->w, qb->w) + + MULT_FP(qa->x, qb->x) + + MULT_FP(qa->y, qb->y) + + MULT_FP(qa->z, qb->z)); //if qa = qb or qa = -qb then theta = 0 and we can return qa if (cosHalfTheta >= 1.0 || cosHalfTheta <= -1.0) { - res.w = qa.w; - res.x = qa.x; - res.y = qa.y; - res.z = qa.z; goto exit; } if (cosHalfTheta < 0) { - qb.w = -qb.w; - qb.x = -qb.x; - qb.y = -qb.y; - qb.z = qb.z; + qb->w = -qb->w; + qb->x = -qb->x; + qb->y = -qb->y; + qb->z = qb->z; cosHalfTheta = -cosHalfTheta; } @@ -406,11 +455,11 @@ interpolate(struct Quaternions qa, struct Quaternions qb) float sinHalfTheta = sqrt(1.0 - cosHalfTheta * cosHalfTheta); //if theta = 180 degrees then result is not fully defined // we could rotate around any axis normal to qa or qb - if (sinHalfTheta < 0.001 && sinHalfTheta > -0.001) { - res.w = ((qa.w >> 1) + (qb.w >> 1)); - res.x = ((qa.x >> 1) + (qb.x >> 1)); - res.y = ((qa.y >> 1) + (qb.y >> 1)); - res.z = ((qa.z >> 1) + (qb.z >> 1)); + if (sinHalfTheta < 0.01 && sinHalfTheta > -0.01) { + qa->w = ((qa->w >> 1) + (qb->w >> 1)); + qa->x = ((qa->x >> 1) + (qb->x >> 1)); + qa->y = ((qa->y >> 1) + (qb->y >> 1)); + qa->z = ((qa->z >> 1) + (qb->z >> 1)); goto exit; } @@ -418,55 +467,58 @@ interpolate(struct Quaternions qa, struct Quaternions qb) FIXED_POINT ratioA = FLOAT2FIXED(sin((1 - FIXED2FLOAT(interpolationStep)) * halfTheta) / sinHalfTheta); FIXED_POINT ratioB = FLOAT2FIXED(sin(FIXED2FLOAT(interpolationStep) * halfTheta) / sinHalfTheta); - res.w = (MULT_FP(qa.w, ratioA) + MULT_FP(qb.w, ratioB)); - res.x = (MULT_FP(qa.x, ratioA) + MULT_FP(qb.x, ratioB)); - res.y = (MULT_FP(qa.y, ratioA) + MULT_FP(qb.y, ratioB)); - res.z = (MULT_FP(qa.z, ratioA) + MULT_FP(qb.z, ratioB)); + qa->w = (MULT_FP(qa->w, ratioA) + MULT_FP(qb->w, ratioB)); + qa->x = (MULT_FP(qa->x, ratioA) + MULT_FP(qb->x, ratioB)); + qa->y = (MULT_FP(qa->y, ratioA) + MULT_FP(qb->y, ratioB)); + qa->z = (MULT_FP(qa->z, ratioA) + MULT_FP(qb->z, ratioB)); exit: interpolationStep += ACTION_STEP_FP; - return res; } void -handleAngle(char input) +handleAngle(uint8_t input) { // TODO if (currentlyMoving == 0) { currentlyMoving = input; + struct Quaternions tmp; switch (input) { case 'w': case 'W': - Target = multQ(GET_ROTATE_X_Q(M_PI_2), Current); + tmp = GET_ROTATE_X_Q(M_PI_2); break; case 'a': case 'A': - Target = multQ(GET_ROTATE_Y_Q(-M_PI_2), Current); + tmp = GET_ROTATE_Y_Q(-M_PI_2); break; case 's': case 'S': - Target = multQ(GET_ROTATE_X_Q(-M_PI_2), Current); + tmp = GET_ROTATE_X_Q(-M_PI_2); break; case 'd': case 'D': - Target = multQ(GET_ROTATE_Y_Q(M_PI_2), Current); + tmp = GET_ROTATE_Y_Q(M_PI_2); break; case 'q': case 'Q': - Target = multQ(GET_ROTATE_Z_Q(-M_PI_2), Current); + tmp = GET_ROTATE_Z_Q(-M_PI_2); break; case 'e': case 'E': - Target = multQ(GET_ROTATE_Z_Q(M_PI_2), Current); + tmp = GET_ROTATE_Z_Q(M_PI_2); break; default: currentlyMoving = 0; + return; //TODO idle movement } + multQ(&tmp, &Target); + Target = tmp; normalize(&Target); } else { - if (interpolationStep < (1 << fp) - ACTION_STEP_FP * 2) { - Current = interpolate(Current, Target); + if (interpolationStep < (1 << FP) ) { + interpolate(&Current, &Target); normalize(&Current); } else { @@ -477,31 +529,34 @@ handleAngle(char input) } } -char +uint8_t getInput() { // TODO - char c = 'd'; + uint8_t c = 'd'; handleAngle(c); return c; } - int main() { - REG_DISPCNT = DISPCNT_BG_MODE(3) | DISPCNT_BG2_ENABLE; + REG_DISPCNT = DISPCNT_BG_MODE(4) | DISPCNT_BG2_ENABLE; Current = GET_ROTATE_Z_Q(0); + init_colors(); + while (1) { + memset(MEM_VRAM_MODE4, 0, GBA_SCREEN_H * GBA_SCREEN_W); memset(output, NUM_FACES, VWIDTH * VHEIGHT); + memset(maxZbufByColor, 0, 2 * sizeof(FIXED_POINT) * NUM_FACES); memset(zBuffer, 0xffffffff, VWIDTH * VHEIGHT * sizeof(FIXED_POINT)); - for (FIXED_POINT cubeX = -CUBE_WIDTH_FP + STEP_FP ; - cubeX <= CUBE_WIDTH_FP - STEP_FP; cubeX += STEP_FP) { - for (FIXED_POINT cubeY = -CUBE_WIDTH_FP + STEP_FP; - cubeY <= CUBE_WIDTH_FP - STEP_FP; cubeY += STEP_FP) { + for (FIXED_POINT cubeX = -CUBE_WIDTH_FP + 2 * (1 << FP); + cubeX <= CUBE_WIDTH_FP - 2 * (1 << FP); cubeX += STEP_FP - 4 * (1 << FP)) { + for (FIXED_POINT cubeY = -CUBE_WIDTH_FP + 2 * (1 << FP); + cubeY <= CUBE_WIDTH_FP - 2 * (1 << FP); cubeY += STEP_FP - 4 * (1 << FP)) { switch (frontFacingFace) { case FACE_FRONT: rotateCube(cubeX, cubeY, -CUBE_WIDTH_FP, FACE_FRONT);